IDEAS home Printed from https://ideas.repec.org/p/rie/riecdt/105.html
   My bibliography  Save this paper

The Global Financial Cycle and Country Risk in Emerging Markets During Stress Episodes: A Copula-CoVaR Approach

Author

Listed:
  • Melo-Velandia, Luis Fernando
  • Romero-Chamorro, José Vicente
  • Ramírez-González, Mahicol Stiben

Abstract

In this paper,we analyze the tail-dependence structure of credit default swaps (CDS) and the global financial cycle for a group of eleven emerging markets. Using a Copula-CoVaR model,we provide evidence that there is a significant taildependence between variables related with the global financial cycle, such as the VIX, and emerging market CDS. These results are particularly important in the context of distressed global financial markets (right tail of the distributions of the VIX) because they provide international investors with relevant information on how to rebalance their portfolios and a more suitable metric to analyze sovereign risk that goes beyond the traditional CoVaR. Additionally, we present further evidence supporting the importance of the global financial cycle in sovereign risk dynamics.

Suggested Citation

  • Melo-Velandia, Luis Fernando & Romero-Chamorro, José Vicente & Ramírez-González, Mahicol Stiben, 2023. "The Global Financial Cycle and Country Risk in Emerging Markets During Stress Episodes: A Copula-CoVaR Approach," Working papers 105, Red Investigadores de Economía.
  • Handle: RePEc:rie:riecdt:105
    as

    Download full text from publisher

    File URL: https://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/10620/be_1231.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gilchrist, Simon & Wei, Bin & Yue, Vivian Z. & Zakrajšek, Egon, 2022. "Sovereign risk and financial risk," Journal of International Economics, Elsevier, vol. 136(C).
    2. Naifar, Nader, 2012. "Modeling the dependence structure between default risk premium, equity return volatility and the jump risk: Evidence from a financial crisis," Economic Modelling, Elsevier, vol. 29(2), pages 119-131.
    3. Wang, Qunwei & Liu, Mengmeng & Xiao, Ling & Dai, Xingyu & Li, Matthew C. & Wu, Fei, 2022. "Conditional sovereign CDS in market basket risk scenario: A dynamic vine-copula analysis," International Review of Financial Analysis, Elsevier, vol. 80(C).
    4. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    5. Atil, Ahmed & Bradford, Marc & Elmarzougui, Abdelaziz & Lahiani, Amine, 2016. "Conditional dependence of US and EU sovereign CDS: A time-varying copula-based estimation," Finance Research Letters, Elsevier, vol. 19(C), pages 42-53.
    6. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    7. Liu, Bing-Yue & Fan, Ying & Ji, Qiang & Hussain, Nazim, 2022. "High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system," Energy Economics, Elsevier, vol. 105(C).
    8. Habib, Maurizio Michael & Venditti, Fabrizio, 2018. "The global financial cycle: implications for the global economy and the euro area," Economic Bulletin Articles, European Central Bank, vol. 6.
    9. Cheuathonghua, Massaporn & de Boyrie, Maria E. & Pavlova, Ivelina & Wongkantarakorn, Jutamas, 2022. "Extreme risk spillovers from commodity indexes to sovereign CDS spreads of commodity dependent countries: A VAR quantile analysis," International Review of Financial Analysis, Elsevier, vol. 80(C).
    10. Ahmed Atil & Marc Bradford & Abdelaziz Elmarzougui & Amine Lahiani, 2016. "Conditional dependence of US and EU sovereign CDS: A time-varying copula-based estimation," Post-Print hal-03536632, HAL.
    11. Reboredo, Juan C. & Ugolini, Andrea, 2016. "Quantile dependence of oil price movements and stock returns," Energy Economics, Elsevier, vol. 54(C), pages 33-49.
    12. Habib, Maurizio M. & Stracca, Livio, 2012. "Getting beyond carry trade: What makes a safe haven currency?," Journal of International Economics, Elsevier, vol. 87(1), pages 50-64.
    13. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melo-Velandia, Luis Fernando & Romero, José Vicente & Ramírez-González, Mahicol Stiben, 2025. "The Global Financial Cycle and country risk in emerging markets during stress episodes: A Copula-CoVaR approach," Research in International Business and Finance, Elsevier, vol. 73(PA).
    2. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2022. "Spillovers and diversification benefits between oil futures and ASEAN stock markets," Resources Policy, Elsevier, vol. 79(C).
    3. Ferreiro Javier Ojea, 2019. "Structural change in the link between oil and the European stock market: implications for risk management," Dependence Modeling, De Gruyter, vol. 7(1), pages 53-125, January.
    4. Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
    5. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    6. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    7. Rehman, Mobeen Ur, 2020. "Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis," Resources Policy, Elsevier, vol. 68(C).
    8. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Risk spillovers and diversification between oil and non-ferrous metals during bear and bull market states," Resources Policy, Elsevier, vol. 72(C).
    9. Zhou, Wei-Xing & Dai, Yun-Shi & Duong, Kiet Tuan & Dai, Peng-Fei, 2024. "The impact of the Russia-Ukraine conflict on the extreme risk spillovers between agricultural futures and spots," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 91-111.
    10. Mensi, Walid & Hanif, Waqas & Vo, Xuan Vinh & Choi, Ki-Hong & Yoon, Seong-Min, 2023. "Upside/Downside spillovers between oil and Chinese stock sectors: From the global financial crisis to global pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    11. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    12. Shahzad, Syed Jawad Hussain & Mensi, Walid & Hammoudeh, Shawkat & Rehman, Mobeen Ur & Al-Yahyaee, Khamis H., 2018. "Extreme dependence and risk spillovers between oil and Islamic stock markets," Emerging Markets Review, Elsevier, vol. 34(C), pages 42-63.
    13. Yangmin Ke & Chongguang Li & Andrew M. McKenzie & Ping Liu, 2019. "Risk Transmission between Chinese and U.S. Agricultural Commodity Futures Markets—A CoVaR Approach," Sustainability, MDPI, vol. 11(1), pages 1-18, January.
    14. Boako, Gideon & Alagidede, Paul, 2017. "Currency price risk and stock market returns in Africa: Dependence and downside spillover effects with stochastic copulas," Journal of Multinational Financial Management, Elsevier, vol. 41(C), pages 92-114.
    15. Wang, Bo & Xiao, Yang, 2023. "Risk spillovers from China's and the US stock markets during high-volatility periods: Evidence from East Asianstock markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    16. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    17. Yufei Cao, 2021. "Modeling the dependence structure and systemic risk of all listed insurance companies in the Chinese insurance market," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(4), pages 367-399, December.
    18. Yu, Honghai & Du, Donglei & Fang, Libing & Yan, Panpan, 2018. "Risk contribution of crude oil to industry stock returns," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 179-199.
    19. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    20. Rehman, Mobeen Ur & Asghar, Nadia & Kang, Sang Hoon, 2020. "Do Islamic indices provide diversification to bitcoin? A time-varying copulas and value at risk application," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).

    More about this item

    Keywords

    Global financial cycle; Country risk; CDS; Copula-CoVaR;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rie:riecdt:105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CAIE (email available below). General contact details of provider: https://edirc.repec.org/data/redcoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.