IDEAS home Printed from https://ideas.repec.org/a/bla/rmgtin/v24y2021i4p367-399.html
   My bibliography  Save this article

Modeling the dependence structure and systemic risk of all listed insurance companies in the Chinese insurance market

Author

Listed:
  • Yufei Cao

Abstract

As a developing country, China's insurance market is already the second largest insurance market in the world, and its development is inseparable from the comprehensive development of insurance companies' business. At present, insurance companies are engaged in both traditional and nontraditional insurance businesses. Thus, to avoid extreme financial events, the insurance market requires more risk management. Hence, examining systemic risk in the insurance market in China is an interesting research topic. This paper studies the comovement between all listed insurance companies and the insurance market in China by modeling the average and extreme dependence structure using different copula specifications. Furthermore, it analyzes both downside and upside risk spillover effects from insurance companies to the insurance market by quantifying the following three market risk measures: the value‐at‐risk (VaR), the conditional VaR (CoVaR) and the delta CoVaR (ΔCoVaR). Finally, we test the significance of risk spillover effects and provide a formal ranking of the listed insurance companies with respect to their contribution to both the downside and upside systemic risk of the insurance market.

Suggested Citation

  • Yufei Cao, 2021. "Modeling the dependence structure and systemic risk of all listed insurance companies in the Chinese insurance market," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(4), pages 367-399, December.
  • Handle: RePEc:bla:rmgtin:v:24:y:2021:i:4:p:367-399
    DOI: 10.1111/rmir.12186
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rmir.12186
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rmir.12186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    2. Faisal Baluch & Stanley Mutenga & Chris Parsons, 2011. "Insurance, Systemic Risk and the Financial Crisis," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(1), pages 126-163, January.
    3. Dong, Yizhe & Firth, Michael & Hou, Wenxuan & Yang, Weiwei, 2016. "Evaluating the performance of Chinese commercial banks: A comparative analysis of different types of banks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 280-295.
    4. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    5. Iftekhar Hasan & Nada Kobeissi & Haizhi Wang & Mingming Zhou, 2015. "Banking Structure, Marketization, and Small Business Development: Regional Evidence From China," Pacific Economic Review, Wiley Blackwell, vol. 20(3), pages 487-510, August.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    7. Liang, Qi & Lu, Yanchen & Li, Zheng, 2020. "Business connectedness or market risk? Evidence from financial institutions in China," China Economic Review, Elsevier, vol. 62(C).
    8. repec:zbw:bofitp:2015_011 is not listed on IDEAS
    9. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    10. Martin F. Grace, 2010. "The Insurance Industry and Systemic Risk: Evidence and Discussion," NFI Policy Briefs 2010-PB-02, Indiana State University, Scott College of Business, Networks Financial Institute.
    11. Bernal, Oscar & Gnabo, Jean-Yves & Guilmin, Grégory, 2014. "Assessing the contribution of banks, insurance and other financial services to systemic risk," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 270-287.
    12. Bierth, Christopher & Irresberger, Felix & Weiß, Gregor N.F., 2015. "Systemic risk of insurers around the globe," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 232-245.
    13. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    14. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    15. Fuchun Li & Héctor Pérez Saiz, 2016. "Measuring Systemic Risk Across Financial Market Infrastructures," Staff Working Papers 16-10, Bank of Canada.
    16. Jianhua Gang & Zongxin Qian, 2015. "China’s Monetary Policy and Systemic Risk," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(4), pages 701-713, July.
    17. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    18. repec:zbw:bofitp:urn:nbn:fi:bof-201504131154 is not listed on IDEAS
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    2. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Risk spillovers and diversification between oil and non-ferrous metals during bear and bull market states," Resources Policy, Elsevier, vol. 72(C).
    3. Xiao, Yang, 2020. "The risk spillovers from the Chinese stock market to major East Asian stock markets: A MSGARCH-EVT-copula approach," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 173-186.
    4. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Downside/upside price spillovers between precious metals: A vine copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 84-102.
    5. Yufei Cao, 2021. "Measuring systemic risk and dependence structure between real estates and banking sectors in China using a CoVaR‐copula method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5930-5947, October.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2016. "The impact of downward/upward oil price movements on metal prices," Resources Policy, Elsevier, vol. 49(C), pages 129-141.
    7. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    8. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    9. Shahzad, Syed Jawad Hussain & Mensi, Walid & Hammoudeh, Shawkat & Rehman, Mobeen Ur & Al-Yahyaee, Khamis H., 2018. "Extreme dependence and risk spillovers between oil and Islamic stock markets," Emerging Markets Review, Elsevier, vol. 34(C), pages 42-63.
    10. Cao, Yufei, 2022. "Extreme risk spillovers across financial markets under different crises," Economic Modelling, Elsevier, vol. 116(C).
    11. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2016. "Downside and upside risk spillovers between exchange rates and stock prices," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 76-96.
    12. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    13. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    14. Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
    15. Rahman, Md Lutfur & Troster, Victor & Uddin, Gazi Salah & Yahya, Muhammad, 2022. "Systemic risk contribution of banks and non-bank financial institutions across frequencies: The Australian experience," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Rehman, Mobeen Ur, 2020. "Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis," Resources Policy, Elsevier, vol. 68(C).
    17. Morelli, David & Vioto, Davide, 2020. "Assessing the contribution of China’s financial sectors to systemic risk," Journal of Financial Stability, Elsevier, vol. 50(C).
    18. Liu, Xiaochun, 2017. "Measuring systemic risk with regime switching in tails," Economic Modelling, Elsevier, vol. 67(C), pages 55-72.
    19. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Al-Yahyaee, Khamis Hamed & Shahbaz, Muhammad, 2017. "Oil and foreign exchange market tail dependence and risk spillovers for MENA, emerging and developed countries: VMD decomposition based copulas," Energy Economics, Elsevier, vol. 67(C), pages 476-495.
    20. Yangmin Ke & Chongguang Li & Andrew M. McKenzie & Ping Liu, 2019. "Risk Transmission between Chinese and U.S. Agricultural Commodity Futures Markets—A CoVaR Approach," Sustainability, MDPI, vol. 11(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rmgtin:v:24:y:2021:i:4:p:367-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1098-1616 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.