IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v74y2018icp565-581.html
   My bibliography  Save this article

The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method

Author

Listed:
  • Li, Xiafei
  • Wei, Yu

Abstract

This paper examines the dependence structure between crude oil market and China stock market over different investment horizons, before and after the recent financial crisis, by combining the variational mode decomposition (VMD) method with various static and time-varying copulas. Based on the decomposed time series and the copula dependence, the Value-at-Risk (VaR), conditional VaR (CoVaR) and delta CoVaR (ΔCoVaR) are quantified to analyze the upside and downside risk spillovers from oil market to China stock market in raw, short- and long-run investment horizons before and after the financial crisis. The empirical results show that, first, the recent financial crisis enhances the dependences between the crude oil market and China stock market, and the long-run dependence increases more significantly than that of short-run. For the raw return series, there are symmetric upper and lower tail dependencies in full sample and pre-crisis subsample periods, but an average dependence in post-crisis subsample period. Second, the VaR of China stock market increases heavily around the financial crisis, but the average VaR after the crisis deceases compared to the risk before the crisis. Third, the risk spillovers from crude oil price to China stock market are found in each sample periods. Before the crisis, however, it mainly exists in long-run horizon, while after the crisis, it happens in both short- and long-run horizons. Finally, the risk spillovers from oil price to China stock market display strong asymmetric features, with larger long-term, downside risk spillovers in post-crisis subsample.

Suggested Citation

  • Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
  • Handle: RePEc:eee:eneeco:v:74:y:2018:i:c:p:565-581
    DOI: 10.1016/j.eneco.2018.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318302597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiou, Jer-Shiou & Lee, Yen-Hsien, 2009. "Jump dynamics and volatility: Oil and the stock markets," Energy, Elsevier, vol. 34(6), pages 788-796.
    2. Jiang, Yonghong & Lao, Jiashun & Mo, Bin & Nie, He, 2018. "Dynamic linkages among global oil market, agricultural raw material markets and metal markets: An application of wavelet and copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 265-279.
    3. Park, Jungwook & Ratti, Ronald A., 2008. "Oil price shocks and stock markets in the U.S. and 13 European countries," Energy Economics, Elsevier, vol. 30(5), pages 2587-2608, September.
    4. Hedi Arouri, Mohamed El & Khuong Nguyen, Duc, 2010. "Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade," Energy Policy, Elsevier, vol. 38(8), pages 4528-4539, August.
    5. Balcilar, Mehmet & Ozdemir, Zeynel Abidin, 2013. "The causal nexus between oil prices and equity market in the U.S.: A regime switching model," Energy Economics, Elsevier, vol. 39(C), pages 271-282.
    6. Francois Chesnay & Eric Jondeau, 2001. "Does Correlation Between Stock Returns Really Increase During Turbulent Periods?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(1), pages 53-80, February.
    7. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    8. Chiang, Thomas C. & Jeon, Bang Nam & Li, Huimin, 2007. "Dynamic correlation analysis of financial contagion: Evidence from Asian markets," Journal of International Money and Finance, Elsevier, vol. 26(7), pages 1206-1228, November.
    9. Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015. "Regime switching model of US crude oil and stock market prices: 1859 to 2013," Energy Economics, Elsevier, vol. 49(C), pages 317-327.
    10. Yang, Liansheng & Zhu, Yingming & Wang, Yudong & Wang, Yiqi, 2016. "Multifractal detrended cross-correlations between crude oil market and Chinese ten sector stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 255-265.
    11. Hilde C. Bjørnland, 2009. "Oil Price Shocks And Stock Market Booms In An Oil Exporting Country," Scottish Journal of Political Economy, Scottish Economic Society, vol. 56(2), pages 232-254, May.
    12. Raza, Naveed & Jawad Hussain Shahzad, Syed & Tiwari, Aviral Kumar & Shahbaz, Muhammad, 2016. "Asymmetric impact of gold, oil prices and their volatilities on stock prices of emerging markets," Resources Policy, Elsevier, vol. 49(C), pages 290-301.
    13. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    14. Bernal, Oscar & Gnabo, Jean-Yves & Guilmin, Grégory, 2014. "Assessing the contribution of banks, insurance and other financial services to systemic risk," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 270-287.
    15. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "Time-varying effect of oil market shocks on the stock market," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 150-163.
    16. Berger, Theo, 2015. "A wavelet based approach to measure and manage contagion at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 338-350.
    17. Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
    18. Anca Pircalabu & Jesper Jung, 2017. "A mixed C-vine copula model for hedging price and volumetric risk in wind power trading," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1583-1600, October.
    19. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    20. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    21. Papapetrou, Evangelia, 2001. "Oil price shocks, stock market, economic activity and employment in Greece," Energy Economics, Elsevier, vol. 23(5), pages 511-532, September.
    22. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    23. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    24. Filis, George, 2010. "Macro economy, stock market and oil prices: Do meaningful relationships exist among their cyclical fluctuations?," Energy Economics, Elsevier, vol. 32(4), pages 877-886, July.
    25. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    26. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    27. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    28. Apergis, Nicholas & Miller, Stephen M., 2009. "Do structural oil-market shocks affect stock prices?," Energy Economics, Elsevier, vol. 31(4), pages 569-575, July.
    29. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    30. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    31. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    32. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    33. Cong, Rong-Gang & Wei, Yi-Ming & Jiao, Jian-Lin & Fan, Ying, 2008. "Relationships between oil price shocks and stock market: An empirical analysis from China," Energy Policy, Elsevier, vol. 36(9), pages 3544-3553, September.
    34. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
    35. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    36. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    37. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.
    38. Jammazi, Rania & Reboredo, Juan C., 2016. "Dependence and risk management in oil and stock markets. A wavelet-copula analysis," Energy, Elsevier, vol. 107(C), pages 866-888.
    39. Miller, J. Isaac & Ratti, Ronald A., 2009. "Crude oil and stock markets: Stability, instability, and bubbles," Energy Economics, Elsevier, vol. 31(4), pages 559-568, July.
    40. Berger, Theo & Uddin, Gazi Salah, 2016. "On the dynamic dependence between equity markets, commodity futures and economic uncertainty indexes," Energy Economics, Elsevier, vol. 56(C), pages 374-383.
    41. Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
    42. Reboredo, Juan C. & Ugolini, Andrea, 2016. "Quantile dependence of oil price movements and stock returns," Energy Economics, Elsevier, vol. 54(C), pages 33-49.
    43. Silva Filho, Osvaldo Candido da & Ziegelmann, Flavio Augusto & Dueker, Michael J., 2012. "Modeling dependence dynamics through copulas with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 346-356.
    44. Tong, Bin & Wu, Chongfeng & Zhou, Chunyang, 2013. "Modeling the co-movements between crude oil and refined petroleum markets," Energy Economics, Elsevier, vol. 40(C), pages 882-897.
    45. Shahzad, Syed Jawad Hussain & Kumar, Ronald Ravinesh & Ali, Sajid & Ameer, Saba, 2016. "Interdependence between Greece and other European stock markets: A comparison of wavelet and VMD copula, and the portfolio implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 8-33.
    46. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    47. Nandha, Mohan & Faff, Robert, 2008. "Does oil move equity prices? A global view," Energy Economics, Elsevier, vol. 30(3), pages 986-997, May.
    48. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    49. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    50. Mensi, Walid & Tiwari, Aviral & Bouri, Elie & Roubaud, David & Al-Yahyaee, Khamis H., 2017. "The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes," Energy Economics, Elsevier, vol. 66(C), pages 122-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
    2. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    3. Ferreiro Javier Ojea, 2019. "Structural change in the link between oil and the European stock market: implications for risk management," Dependence Modeling, De Gruyter, vol. 7(1), pages 53-125, January.
    4. Aviral Kumar Tiwari & Sangram Keshari Jena & Satish Kumar & Erik Hille, 2022. "Is oil price risk systemic to sectoral equity markets of an oil importing country? Evidence from a dependence-switching copula delta CoVaR approach," Annals of Operations Research, Springer, vol. 315(1), pages 429-461, August.
    5. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    6. Mokni, Khaled & Youssef, Manel, 2019. "Measuring persistence of dependence between crude oil prices and GCC stock markets: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 14-33.
    7. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    8. Filis, George & Degiannakis, Stavros & Floros, Christos, 2011. "Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 152-164, June.
    9. Mishra, Shekhar & Mishra, Sibanjan, 2021. "Are Indian sectoral indices oil shock prone? An empirical evaluation," Resources Policy, Elsevier, vol. 70(C).
    10. Du, Limin & He, Yanan, 2015. "Extreme risk spillovers between crude oil and stock markets," Energy Economics, Elsevier, vol. 51(C), pages 455-465.
    11. Babak Fazelabdolabadi, 2019. "Uncertainty and energy-sector equity returns in Iran: a Bayesian and quasi-Monte Carlo time-varying analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    12. Pal, Debdatta & Mitra, Subrata K., 2019. "Oil price and automobile stock return co-movement: A wavelet coherence analysis," Economic Modelling, Elsevier, vol. 76(C), pages 172-181.
    13. Ben-Salha, Ousama & Mokni, Khaled, 2022. "Detrended cross-correlation analysis in quantiles between oil price and the US stock market," Energy, Elsevier, vol. 242(C).
    14. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    15. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    16. You, Wanhai & Guo, Yawei & Zhu, Huiming & Tang, Yong, 2017. "Oil price shocks, economic policy uncertainty and industry stock returns in China: Asymmetric effects with quantile regression," Energy Economics, Elsevier, vol. 68(C), pages 1-18.
    17. Shahzad, Syed Jawad Hussain & Mensi, Walid & Hammoudeh, Shawkat & Rehman, Mobeen Ur & Al-Yahyaee, Khamis H., 2018. "Extreme dependence and risk spillovers between oil and Islamic stock markets," Emerging Markets Review, Elsevier, vol. 34(C), pages 42-63.
    18. Degiannakis, Stavros & Filis, George & Floros, Christos, 2013. "Oil and stock returns: Evidence from European industrial sector indices in a time-varying environment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 175-191.
    19. Sukcharoen, Kunlapath & Zohrabyan, Tatevik & Leatham, David & Wu, Ximing, 2014. "Interdependence of oil prices and stock market indices: A copula approach," Energy Economics, Elsevier, vol. 44(C), pages 331-339.
    20. Degiannakis, Stavros & Filis, George & Floros, Christos, 2013. "Oil and stock price returns: Evidence from European industrial sector indices in a time-varying environment," MPRA Paper 80495, University Library of Munich, Germany.

    More about this item

    Keywords

    Crude oil market; China stock market; Variational mode decomposition; Copula; CoVaR;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:74:y:2018:i:c:p:565-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.