IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00646178.html
   My bibliography  Save this paper

Fractional and seasonal filtering

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Laurent Ferrara

    (DGEI-DAMEP - Banque de France)

Abstract

We introduce in this study a new strategy to model simultaneously persistence and seasonality inside economic data using different stochastic filters based on the Gegenbauer modelling. The limits and advantages of these filters are discussed in order to improve the adjustment of economic series, particularly when specific trend is observed. The series of new cars registrations in the Euro-zone is modelled using the previous filters

Suggested Citation

  • Dominique Guegan & Laurent Ferrara, 2008. "Fractional and seasonal filtering," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00646178, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00646178
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00646178
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00646178/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185370, HAL.
    2. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    3. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    4. Guglielmo Maria Caporale & Luis Gil-Alana, 2006. "Long memory at the long-run and the seasonal monthly frequencies in the US money stock," Applied Economics Letters, Taylor & Francis Journals, vol. 13(15), pages 965-968.
    5. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    6. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    7. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    8. Wayne A. Woodward & Q. C. Cheng & H. L. Gray, 1998. "A k‐Factor GARMA Long‐memory Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 485-504, July.
    9. Josu Arteche, 2002. "Semiparametric robust tests on seasonal or cyclical long memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 251-285, May.
    10. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Ferrara & Dominique Guégan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-10.
    2. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    3. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    4. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes: a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Post-Print halshs-00277379, HAL.
    6. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    7. Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Post-Print halshs-00283710, HAL.
    8. repec:ebl:ecbull:v:3:y:2008:i:29:p:1-10 is not listed on IDEAS
    9. Souza, Leonardo Rocha & Soares, Lacir Jorge, 2003. "Forecasting electricity load demand: analysis of the 2001 rationing period in Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 491, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    10. Voges, Michelle & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Seasonal long memory in intraday volatility and trading volume of Dow Jones stocks," Hannover Economic Papers (HEP) dp-599, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    12. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    13. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.
    14. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Post-Print halshs-00185370, HAL.
    15. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    16. L.A. Gil-Alanaa, 2007. "Testing The Existence of Multiple Cycles in Financial and Economic Time Series," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 1-20, May.
    17. Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
    18. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    19. Josu Arteche, 2012. "Standard and seasonal long memory in volatility: an application to Spanish inflation," Empirical Economics, Springer, vol. 42(3), pages 693-712, June.
    20. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    21. Dominique Guegan & Zhiping Lu, 2009. "Wavelet Method for Locally Stationary Seasonal Long Memory Processes," Post-Print halshs-00375531, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00646178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.