IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324001105.html
   My bibliography  Save this article

Tests for high-dimensional generalized linear models under general covariance structure

Author

Listed:
  • Yang, Weichao
  • Guo, Xu
  • Zhu, Lixing

Abstract

This study investigates the testing of regression coefficients within high-dimensional generalized linear models featuring general covariance structures. The derived asymptotic properties reveal that distinct covariance structures can lead to varying limiting null distributions, including the normal distribution, for a widely employed quadratic-norm based test statistic. This circumstance renders it infeasible to determine critical values through a limiting null distribution. In response to this challenge, we propose a multiplier bootstrap test procedure for practical implementation. Additionally, we introduce a modified version of this procedure, incorporating projection when dealing with nuisance parameters. We then proceed to examine the asymptotic level and power of the proposed tests and assess their finite-sample performance through simulations. Finally, we present a real data analysis to illustrate the practical application of the proposed tests.

Suggested Citation

  • Yang, Weichao & Guo, Xu & Zhu, Lixing, 2024. "Tests for high-dimensional generalized linear models under general covariance structure," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324001105
    DOI: 10.1016/j.csda.2024.108026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001105
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324001105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.