IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324001105.html
   My bibliography  Save this article

Tests for high-dimensional generalized linear models under general covariance structure

Author

Listed:
  • Yang, Weichao
  • Guo, Xu
  • Zhu, Lixing

Abstract

This study investigates the testing of regression coefficients within high-dimensional generalized linear models featuring general covariance structures. The derived asymptotic properties reveal that distinct covariance structures can lead to varying limiting null distributions, including the normal distribution, for a widely employed quadratic-norm based test statistic. This circumstance renders it infeasible to determine critical values through a limiting null distribution. In response to this challenge, we propose a multiplier bootstrap test procedure for practical implementation. Additionally, we introduce a modified version of this procedure, incorporating projection when dealing with nuisance parameters. We then proceed to examine the asymptotic level and power of the proposed tests and assess their finite-sample performance through simulations. Finally, we present a real data analysis to illustrate the practical application of the proposed tests.

Suggested Citation

  • Yang, Weichao & Guo, Xu & Zhu, Lixing, 2024. "Tests for high-dimensional generalized linear models under general covariance structure," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324001105
    DOI: 10.1016/j.csda.2024.108026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001105
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    2. Wang, Siyang & Cui, Hengjian, 2015. "A new test for part of high dimensional regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 187-203.
    3. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    4. Rui Wang & Wangli Xu, 2022. "An approximate randomization test for the high-dimensional two-sample Behrens–Fisher problem under arbitrary covariances [Broad patterns of gene expression revealed by clustering analysis of tumor ," Biometrika, Biometrika Trust, vol. 109(4), pages 1117-1132.
    5. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    6. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    7. Jin-Ting Zhang & Jia Guo & Bu Zhou & Ming-Yen Cheng, 2020. "A Simple Two-Sample Test in High Dimensions Based on L2-Norm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 1011-1027, April.
    8. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    2. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    3. Wang, Jingyi & Zhu, Tianming & Zhang, Jin-Ting, 2024. "Two-sample test for high-dimensional covariance matrices: A normal-reference approach," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
    4. Jianghao Li & Shizhe Hong & Zhenzhen Niu & Zhidong Bai, 2025. "Test for high-dimensional linear hypothesis of mean vectors via random integration," Statistical Papers, Springer, vol. 66(1), pages 1-34, January.
    5. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    7. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    8. Tianming Zhu & Pengfei Wang & Jin-Ting Zhang, 2024. "Two-sample Behrens–Fisher problems for high-dimensional data: a normal reference F-type test," Computational Statistics, Springer, vol. 39(6), pages 3207-3230, September.
    9. Mingjuan Zhang & Libin Jin, 2024. "High-Dimensional U-Statistics Type Hypothesis Testing via Jackknife Pseudo-Values with Multiplier Bootstrap," Mathematics, MDPI, vol. 12(23), pages 1-20, December.
    10. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "A high-dimensional spatial rank test for two-sample location problems," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.
    12. Zhengbang Li & Fuxiang Liu & Luanjie Zeng & Guoxin Zuo, 2021. "A stationary bootstrap test about two mean vectors comparison with somewhat dense differences and fewer sample size than dimension," Computational Statistics, Springer, vol. 36(2), pages 941-960, June.
    13. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "Testing predictor significance with ultra high dimensional multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 275-286.
    15. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    16. Yuanyuan Jiang & Xingzhong Xu, 2022. "A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    17. Wang, Siyang & Cui, Hengjian, 2013. "Generalized F test for high dimensional linear regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 134-149.
    18. Alexander Giessing & Jianqing Fan, 2020. "Bootstrapping $\ell_p$-Statistics in High Dimensions," Papers 2006.13099, arXiv.org, revised Aug 2020.
    19. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    20. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324001105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.