IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v184y2021ics0047259x21000403.html
   My bibliography  Save this article

A high dimensional nonparametric test for proportional covariance matrices

Author

Listed:
  • Xu, Kai
  • Tian, Yan
  • He, Daojiang

Abstract

This work is concerned with testing the proportionality between two high dimensional covariance matrices. Several tests for proportional covariance matrices, based on modifying the classical likelihood ratio test and applicable in high dimension, have been proposed in the literature. Despite their usefulness, they tend to have unsatisfactory performance for nonnormal high dimensional multivariate data in terms of size or power. This article proposes a new high dimensional test by developing a bias correction to the existing test statistic constructed based on a scaled distance measure. The suggested test is nonparametric without requiring any specific parametric distribution such as the normality assumption. It can accommodate scenarios where the data dimension p is greater than the sample size n, namely the “large p, small n” problem. With the aid of tools in modern probability theory, we study theoretical properties of the newly proposed test, which include the asymptotic normality and a power evaluation. We demonstrate empirically that our proposal has good size and power performances for a range of dimensions, sample sizes and distributions in comparison with the existing counterparts.

Suggested Citation

  • Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:jmvana:v:184:y:2021:i:c:s0047259x21000403
    DOI: 10.1016/j.jmva.2021.104762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    2. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    3. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    4. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    5. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    6. Liu, Baisen & Xu, Lin & Zheng, Shurong & Tian, Guo-Liang, 2014. "A new test for the proportionality of two large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 293-308.
    7. Flury, Bernhard W. & Schmid, Martin J., 1992. "Quadratic discriminant functions with constraints on the covariance matrices: Some asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 244-261, February.
    8. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    9. D. Nel & P. Groenewald, 1993. "A Bayesian approach to the multivariate Behrens-Fisher problem under the assumption of proportional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(1), pages 111-124, December.
    10. Xu, Lin & Liu, Baisen & Zheng, Shurong & Bao, Shaokun, 2014. "Testing proportionality of two large-dimensional covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 43-55.
    11. Guanghui Cheng & Baisen Liu & Liuhua Peng & Baoxue Zhang & Shurong Zheng, 2019. "Testing the equality of two high‐dimensional spatial sign covariance matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(1), pages 257-271, March.
    12. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    13. Schott, James R., 1999. "A test for proportional covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 135-146, December.
    14. Flury, Bernhard K., 1986. "Proportionality of k covariance matrices," Statistics & Probability Letters, Elsevier, vol. 4(1), pages 29-33, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    2. Cheng, Guanghui & Liu, Baisen & Tian, Guoliang & Zheng, Shurong, 2020. "Testing proportionality of two high-dimensional covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    3. Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    4. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    5. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    6. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    7. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    8. Ahmad, Rauf, 2022. "Tests for proportionality of matrices with large dimension," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    10. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    11. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    12. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    13. Masashi Hyodo & Takahiro Nishiyama, 2018. "A simultaneous testing of the mean vector and the covariance matrix among two populations for high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 680-699, September.
    14. Deepak Nag Ayyala & Santu Ghosh & Daniel F. Linder, 2022. "Covariance matrix testing in high dimension using random projections," Computational Statistics, Springer, vol. 37(3), pages 1111-1141, July.
    15. Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
    16. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    17. Liu, Baisen & Xu, Lin & Zheng, Shurong & Tian, Guo-Liang, 2014. "A new test for the proportionality of two large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 293-308.
    18. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
    20. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:184:y:2021:i:c:s0047259x21000403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.