IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/16.html
   My bibliography  Save this paper

Information Theory and Knowledge-Gathering

Author

Listed:
  • Murphy, Roy E

Abstract

It is assumed that human knowledge-building depends on a discrete sequential decision-making process subjected to a stochastic information transmitting environment. This environment randomly transmits Shannon type information-packets to the decision-maker, who examines each of them for relevancy and then determines his optimal choices. Using this set of relevant information-packets, the decision-maker adapts, over time, to the stochastic nature of his environment, and optimizes the subjective expected rate-of-growth of knowledge. The decision-maker’s optimal actions, lead to a decision function that involves his view of the subjective entropy of the environmental process and other important parameters at each stage of the process. Using this model of human behavior, one could create psychometric experiments using computer simulation and real decision-makers, to play programmed games to measure the resulting human performance.

Suggested Citation

  • Murphy, Roy E, 2006. "Information Theory and Knowledge-Gathering," MPRA Paper 16, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:16
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/16/1/MPRA_paper_16.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David J. Foster & Matthew A. Wilson, 2006. "Reverse replay of behavioural sequences in hippocampal place cells during the awake state," Nature, Nature, vol. 440(7084), pages 680-683, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Usman Farooq & George Dragoi, 2024. "Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    4. Zhewei Zhang & Yuji K. Takahashi & Marlian Montesinos-Cartegena & Thorsten Kahnt & Angela J. Langdon & Geoffrey Schoenbaum, 2024. "Expectancy-related changes in firing of dopamine neurons depend on hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Hannah Tarder-Stoll & Christopher Baldassano & Mariam Aly, 2024. "The brain hierarchically represents the past and future during multistep anticipation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    8. Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
    9. Hefei Guan & Steven J. Middleton & Takafumi Inoue & Thomas J. McHugh, 2021. "Lateralization of CA1 assemblies in the absence of CA3 input," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Demetrio Ferro & Tyler Cash-Padgett & Maya Zhe Wang & Benjamin Y. Hayden & Rubén Moreno-Bote, 2024. "Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Buddhika Bellana & Abhijit Mahabal & Christopher J. Honey, 2022. "Narrative thinking lingers in spontaneous thought," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Alpha Renner & Forrest Sheldon & Anatoly Zlotnik & Louis Tao & Andrew Sornborger, 2024. "The backpropagation algorithm implemented on spiking neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Linda Judák & Balázs Chiovini & Gábor Juhász & Dénes Pálfi & Zsolt Mezriczky & Zoltán Szadai & Gergely Katona & Benedek Szmola & Katalin Ócsai & Bernadett Martinecz & Anna Mihály & Ádám Dénes & Bálint, 2022. "Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Aurelio Cortese & Ryu Ohata & Maria Alemany-González & Norimichi Kitagawa & Hiroshi Imamizu & Ai Koizumi, 2024. "Time-dependent neural arbitration between cue associative and episodic fear memories," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. J Matthew Mahoney & Ali S Titiz & Amanda E Hernan & Rod C Scott, 2016. "Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    16. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    17. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    20. Qi Huang & Zhibing Xiao & Qianqian Yu & Yuejia Luo & Jiahua Xu & Yukun Qu & Raymond Dolan & Timothy Behrens & Yunzhe Liu, 2024. "Replay-triggered brain-wide activation in humans," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Keywords

    decision-making; dynamic programming; entropy; epistemology; information theory; knowledge; sequential processes; subjective probability;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.