IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v40y1991i3p423-434.html
   My bibliography  Save this article

Nonparametric Comparison of Cumulative Periodograms

Author

Listed:
  • Peter J. Diggle
  • Nicholas I. Fisher

Abstract

Motivated by a problem in the analysis of hormonal time series data, this paper proposes a simple graphical method for comparing two periodograms and describes a new nonparametric approach to testing the hypothesis that the two underlying spectra are the same. Simulation studies show that the new test has power characteristics that are competitive with existing procedures. The relative merits of nonparametric and semiparametric tests are discussed.

Suggested Citation

  • Peter J. Diggle & Nicholas I. Fisher, 1991. "Nonparametric Comparison of Cumulative Periodograms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(3), pages 423-434, November.
  • Handle: RePEc:bla:jorssc:v:40:y:1991:i:3:p:423-434
    DOI: 10.2307/2347522
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2347522
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2347522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Hidalgo & Pedro Souza & Pedro Souza, 2013. "Testing for equality of an increasing number of spectral density functions," STICERD - Econometrics Paper Series 563, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Maharaj, Elizabeth Ann, 2002. "Comparison of non-stationary time series in the frequency domain," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
    3. Jin, Lei, 2021. "Robust tests for time series comparison based on Laplace periodograms," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    4. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    5. Dette, Holger & Paroditis, Efstathios, 2007. "Testing equality of spectral densities," Technical Reports 2007,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Jan Beran & Theo Gasser, 1995. "Testing Equality Of Variances For Paired Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(2), pages 165-176, March.
    7. repec:cep:stiecm:/2013/563 is not listed on IDEAS
    8. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
    9. Shibin Zhang & Xin M. Tu, 2022. "Tests for comparing time‐invariant and time‐varying spectra based on the Anderson–Darling statistic," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 254-282, August.
    10. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
    11. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    12. Dette, Holger & Hildebrandt, Thimo, 2012. "A note on testing hypotheses for stationary processes in the frequency domain," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 101-114, February.
    13. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    14. Daniel Cirkovic & Thomas J. Fisher, 2021. "On testing for the equality of autocovariance in time series," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    15. Alonso, Andres M. & Maharaj, Elizabeth A., 2006. "Comparison of time series using subsampling," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2589-2599, June.
    16. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    17. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    18. Daniel M Keenan & Amy W Quinkert & Donald W Pfaff, 2015. "Stochastic Modeling of Mouse Motor Activity under Deep Brain Stimulation: The Extraction of Arousal Information," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-24, February.
    19. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:40:y:1991:i:3:p:423-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.