IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v176y2022ics0167947322001451.html
   My bibliography  Save this article

Functional non-parametric latent block model: A multivariate time series clustering approach for autonomous driving validation

Author

Listed:
  • Goffinet, Etienne
  • Lebbah, Mustapha
  • Azzag, Hanane
  • Loïc, Giraldi
  • Coutant, Anthony

Abstract

Advanced driving-assistance systems validation remains one of the biggest challenges car manufacturers must tackle to provide safe driverless cars. The reliable validation of these systems requires to assess their reaction's quality and consistency to a broad spectrum of driving scenarios. In this context, large-scale simulation systems bypass the physical “on-tracks” limitations and produce important quantities of high-dimensional time series data. The challenge is to find valuable information in these multivariate unlabeled datasets that may contain noisy, sometimes correlated or non-informative variables. A new model-based tool is proposed for multivariate time series clustering based on a Bayesian co-clustering approach. The tool discriminates groups of correlated temporal variables, while modeling noise and providing probabilistic confidence interval for outlier detection. The proposed Functional Non-Parametric Latent Block Model (FunNPLBM) simultaneously creates a partition of observations and a partition of variables, using latent multivariate Gaussian block distributions. The model parameters follow a bi-dimensional Dirichlet Process as a prior for the block distribution parameters and for block proportions, and natively provides model selection. The method's capacities are illustrated with experiments and benchmarks on a simulated dataset and on an advanced driver-assistance system validation use-case.

Suggested Citation

  • Goffinet, Etienne & Lebbah, Mustapha & Azzag, Hanane & Loïc, Giraldi & Coutant, Anthony, 2022. "Functional non-parametric latent block model: A multivariate time series clustering approach for autonomous driving validation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001451
    DOI: 10.1016/j.csda.2022.107565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001451
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    2. Jacques, Julien & Biernacki, Christophe, 2018. "Model-based co-clustering for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 101-115.
    3. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    4. Charles Bouveyron & Laurent Bozzi & Julien Jacques & François‐Xavier Jollois, 2018. "The functional latent block model for the co‐clustering of electricity consumption curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 897-915, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    2. C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.
    3. Selosse, Margot & Jacques, Julien & Biernacki, Christophe, 2020. "Model-based co-clustering for mixed type data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    5. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    6. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
    7. Lei Jin & Suojin Wang, 2016. "A New Test for Checking the Equality of the Correlation Structures of two time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 355-368, May.
    8. van Dijk, A. & van Rosmalen, J.M. & Paap, R., 2009. "A Bayesian approach to two-mode clustering," Econometric Institute Research Papers EI 2009-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
    10. Vu, Duy & Aitkin, Murray, 2015. "Variational algorithms for biclustering models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 12-24.
    11. Haedo, Christian & Mouchart, Michel, 2018. "Automatic biclustering of regions and sectors," LIDAM Discussion Papers ISBA 2018026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    13. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    15. M. P. B. Gallaugher & C. Biernacki & P. D. McNicholas, 2023. "Parameter-wise co-clustering for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1597-1619, September.
    16. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
    17. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
    18. Gupta, Mayetri, 2014. "An evolutionary Monte Carlo algorithm for Bayesian block clustering of data matrices," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 375-391.
    19. Chabert-Liddell, Saint-Clair & Barbillon, Pierre & Donnet, Sophie & Lazega, Emmanuel, 2021. "A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    20. Michael Salter-Townshend & Thomas Murphy, 2014. "Mixtures of biased sentiment analysers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 85-103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.