IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/123222.html
   My bibliography  Save this paper

A Systematic Review of Key Spatial Econometric Models for Assessing Climate Change Impacts on Agriculture

Author

Listed:
  • AMOUZAY, Hassan
  • El Ghini, Ahmed

Abstract

This paper explores the limitations of traditional econometric models, such as the Ricardian and profit approaches, in accurately quantifying the impacts of climate change on agriculture. While these models offer valuable insights, they often neglect spatial dependencies, heterogeneity, and spillover effects. We argue that spatial econometrics provides a more comprehensive and robust approach to analyzing climate change impacts. By explicitly incorporating spatial relationships between agricultural units, spatial econometric models capture the influence of factors such as proximity to markets, resource sharing, information diffusion, and spatial correlation of climatic variables. We review pioneering studies employing spatial econometric models, including SAR, SEM, SLX, SARAR and SDM, which reveal significant discrepancies between spatial and non-spatial estimations. These studies demonstrate that neglecting spatial dependence can lead to biased estimations and inaccurate predictions of climate change impacts. Moreover, the incorporation of spatial effects often results in smaller marginal effects of climate variables, suggesting that traditional non-spatial models may overestimate negative consequences. This paper contributes to the ongoing research on climate change impacts on agriculture by highlighting the significance of spatial econometrics and emphasizing its potential to inform robust and effective adaptation strategies.

Suggested Citation

  • AMOUZAY, Hassan & El Ghini, Ahmed, 2024. "A Systematic Review of Key Spatial Econometric Models for Assessing Climate Change Impacts on Agriculture," MPRA Paper 123222, University Library of Munich, Germany, revised 13 Dec 2024.
  • Handle: RePEc:pra:mprapa:123222
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/123222/1/MPRA_paper_123222.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Chatzopoulos & Christian Lippert, 2015. "Adaptation and Climate Change Impacts: A Structural Ricardian Analysis of Farm Types in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(2), pages 537-554, June.
    2. Hannah Druckenmiller & Solomon Hsiang, 2018. "Accounting for Unobservable Heterogeneity in Cross Section Using Spatial First Differences," NBER Working Papers 25177, National Bureau of Economic Research, Inc.
    3. Hassan Amouzay & Raja Chakir & Sophie Dabo-Niang & Ahmed El Ghini, 2023. "Structural Changes in Temperature and Precipitation in MENA Countries [Changements structurels des températures et des précipitations dans les pays du Moyen-Orient et de l'Afrique du Nord]," Post-Print hal-04092374, HAL.
    4. David Albouy & Walter Graf & Ryan Kellogg & Hendrik Wolff, 2016. "Climate Amenities, Climate Change, and American Quality of Life," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 205-246.
    5. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    6. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    9. Jaune Vaitkeviciute & Raja Chakir & Steven Van Passel, 2019. "Climate Variable Choice in Ricardian Studies of European Agriculture," Revue économique, Presses de Sciences-Po, vol. 70(3), pages 375-401.
    10. Colin Carter & Xiaomeng Cui & Dalia Ghanem & Pierre Mérel, 2018. "Identifying the Economic Impacts of Climate Change on Agriculture," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 361-380, October.
    11. Patrick S. Ward & Raymond J. G. M. Florax & Alfonso Flores-Lagunes, 2014. "Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 199-226.
    12. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    13. Oussama Zouabi & Nicolas Peridy, 2015. "Direct and indirect effects of climate on agriculture: an application of a spatial panel data analysis to Tunisia," Climatic Change, Springer, vol. 133(2), pages 301-320, November.
    14. Ariel Ortiz-Bobea & Richard E. Just, 2013. "Modeling the Structure of Adaptation in Climate Change Impact Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 244-251.
    15. Yun, Seong D. & Gramig, Benjamin M., 2022. "Spatial Panel Models of Crop Yield Response to Weather: Econometric Specification Strategies and Prediction Performance," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 54(1), pages 53-71, February.
    16. Luc Anselin, 2001. "Spatial Effects in Econometric Practice in Environmental and Resource Economics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 705-710.
    17. Maximilian Auffhammer, 2018. "Quantifying Economic Damages from Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 33-52, Fall.
    18. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    19. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    20. Baylis, Katherine R. & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(3), pages 1-14, August.
    21. Thomas Chatzopoulos & Christian Lippert, 2016. "Endogenous farm-type selection, endogenous irrigation, and spatial effects in Ricardian models of climate change," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(2), pages 217-235.
    22. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    23. Roy Darwin, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Comment," American Economic Review, American Economic Association, vol. 89(4), pages 1049-1052, September.
    24. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    25. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    26. Elodie Blanc & John Reilly, 2017. "Approaches to Assessing Climate Change Impacts on Agriculture: An Overview of the Debate," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 247-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    2. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    3. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    4. Zeilinger, Julian & Niedermayr, Andreas & Quddoos, Abdul & Kantelhardt, Jochen, 2021. "Identifying the Extent of Farm-Level Climate Change Adaptation," 2021 Conference, August 17-31, 2021, Virtual 315233, International Association of Agricultural Economists.
    5. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    6. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    7. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    8. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    9. Manamboba Mitélama Balaka & Koffi Yovo, 2023. "Effet du changement climatique sur la production vivriere au Togo," African Development Review, African Development Bank, vol. 35(1), pages 11-23, March.
    10. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    11. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    12. Sayed Morteza Malaekeh & Layla Shiva & Ammar Safaie, 2024. "Investigating the economic impact of climate change on agriculture in Iran: Spatial spillovers matter," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 433-453, May.
    13. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    14. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    15. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    16. Antonio Accetturo & Matteo Alpino, 2023. "Climate change and Italian agriculture: evidence from weather shocks," Questioni di Economia e Finanza (Occasional Papers) 756, Bank of Italy, Economic Research and International Relations Area.
    17. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    18. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    19. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).
    20. Maria Belyaeva & Raushan Bokusheva, 2018. "Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach," Climatic Change, Springer, vol. 149(2), pages 205-217, July.

    More about this item

    Keywords

    Climate change; econometrics approaches; agriculture; adaptation; spatial econometrics.;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.