IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v103y2021i4p1207-1238.html
   My bibliography  Save this article

Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?

Author

Listed:
  • Pierre Mérel
  • Matthew Gammans

Abstract

The panel approach with fixed effects and nonlinear weather effects has become a popular method to uncover weather impacts on economic outcomes, but its ability to capture long‐run climatic adaptation remains unclear. Building upon a framework proposed by McIntosh and Schlenker (2006), this paper identifies empirical conditions under which the nonlinear panel approach can approximate a long‐run response to climate. When these conditions fail, the obtained relationship may still be interpretable as a weighted average of underlying short‐run and long‐run responses. We use this decomposition to revisit recently published climate impact estimates. For spatially large panels, the estimated temperature–outcome relationship mostly reflects the long‐run climatic response; this is not so for precipitation. We find some evidence of long‐run climatic adaptation for crop yield outcomes in the United States and France.

Suggested Citation

  • Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
  • Handle: RePEc:wly:ajagec:v:103:y:2021:i:4:p:1207-1238
    DOI: 10.1111/ajae.12200
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ajae.12200
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ajae.12200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frances C. Moore & David B. Lobell, 2014. "Adaptation potential of European agriculture in response to climate change," Nature Climate Change, Nature, vol. 4(7), pages 610-614, July.
    2. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    3. Hannah Druckenmiller & Solomon Hsiang, 2018. "Accounting for Unobservable Heterogeneity in Cross Section Using Spatial First Differences," NBER Working Papers 25177, National Bureau of Economic Research, Inc.
    4. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Marshall Burke & Vincent Tanutama, 2019. "Climatic Constraints on Aggregate Economic Output," NBER Working Papers 25779, National Bureau of Economic Research, Inc.
    6. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    7. Gammans, Matthew & Mérel, Pierre & Ortiz-Bobea, Ariel, 2016. "The impact of climate change on cereal yields: Statistical evidence from France," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236322, Agricultural and Applied Economics Association.
    8. Auffhammer, Maximilian & Schlenker, Wolfram, 2014. "Empirical studies on agricultural impacts and adaptation," Energy Economics, Elsevier, vol. 46(C), pages 555-561.
    9. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    10. Marshall Burke & W. Matthew Davis & Noah S. Diffenbaugh, 2018. "Large potential reduction in economic damages under UN mitigation targets," Nature, Nature, vol. 557(7706), pages 549-553, May.
    11. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    12. Joseph Cooper & A. Nam Tran & Steven Wallander, 2017. "Testing for Specification Bias with a Flexible Fourier Transform Model for Crop Yields," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 800-817, April.
    13. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    14. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    15. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    16. Keith Ihlanfeldt & Kevin Willardsen, 2018. "Local Public Services Costs And The Geography Of Development: Evidence From Florida Counties," Journal of Regional Science, Wiley Blackwell, vol. 58(1), pages 5-37, January.
    17. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    18. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
    19. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    20. Joseph Cooper & A. Nam Tran & Steven Wallander, 2017. "Testing for Specification Bias with a Flexible Fourier Transform Model for Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 800-817.
    21. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    22. Robert O. Mendelsohn & Emanuele Massetti, 2017. "The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 280-298.
    23. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    24. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    25. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    26. Marshall Burke & Felipe González & Patrick Baylis & Sam Heft-Neal & Ceren Baysan & Sanjay Basu & Solomon Hsiang, 2018. "Higher temperatures increase suicide rates in the United States and Mexico," Nature Climate Change, Nature, vol. 8(8), pages 723-729, August.
    27. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    28. David Lobell & Christopher Field, 2011. "California perennial crops in a changing climate," Climatic Change, Springer, vol. 109(1), pages 317-333, December.
    29. Kentaro Kawasaki & Shinsuke Uchida, 2016. "Quality Matters More Than Quantity: Asymmetric Temperature Effects on Crop Yield and Quality Grade," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1195-1209.
    30. Maximilian Auffhammer, 2018. "Quantifying Economic Damages from Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 33-52, Fall.
    31. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    32. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    33. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    34. Francis Annan & Wolfram Schlenker, 2015. "Federal Crop Insurance and the Disincentive to Adapt to Extreme Heat," American Economic Review, American Economic Association, vol. 105(5), pages 262-266, May.
    35. Tatyana Deryugina & Solomon Hsiang, 2017. "The Marginal Product of Climate," NBER Working Papers 24072, National Bureau of Economic Research, Inc.
    36. Seon Tae Kim & Wenju Cai & Fei-Fei Jin & Agus Santoso & Lixin Wu & Eric Guilyardi & Soon-Il An, 2014. "Response of El Niño sea surface temperature variability to greenhouse warming," Nature Climate Change, Nature, vol. 4(9), pages 786-790, September.
    37. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    38. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    39. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    2. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    3. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    4. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    5. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    6. Bento, Antonio M. & Miller, Noah & Mookerjee, Mehreen & Severnini, Edson, 2023. "A unifying approach to measuring climate change impacts and adaptation," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    7. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    8. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    9. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    10. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    11. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    12. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    13. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    14. Linsenmeier, Manuel, 2021. "Temperature variability and long-run economic development," LSE Research Online Documents on Economics 110499, London School of Economics and Political Science, LSE Library.
    15. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    16. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    17. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    18. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    19. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    20. Steven J. Dundas & Roger H. von Haefen, 2021. "The importance of data structure and nonlinearities in estimating climate impacts on outdoor recreation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2053-2075, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:103:y:2021:i:4:p:1207-1238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.