IDEAS home Printed from https://ideas.repec.org/a/bla/jageco/v74y2023i1p75-99.html
   My bibliography  Save this article

Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials

Author

Listed:
  • Abdul Quddoos
  • Klaus Salhofer
  • Ulrich B. Morawetz

Abstract

We combine farm accounting data with high‐resolution meteorological data, and climate scenarios to estimate climate change impacts and adaptation potentials at the farm level. To do so, we adapt the seminal model of Moore and Lobell (2014) who applied panel data econometrics to data aggregated from the farm to the regional (subnational) level. We discuss and empirically investigate the advantages and challenges of applying such models to farm‐level data, including issues of endogeneity of explanatory variables, heterogeneity of farm responses to weather shocks, measurement errors in meteorological variables, and aggregation bias. Empirical investigations into these issues reveal that endogeneity due to measurement errors in temperature and precipitation variables, as well as heterogeneous responses of farms toward climate change may be problematic. Moreover, depending on how data are aggregated, results differ substantially compared to farm‐level analysis. Based on data from Austria and two climate scenarios (Effective Measures and High Emission) for 2040, we estimate that the profits of farms will decline, on average, by 4.4% (Effective Measures) and 10% (High Emission). Adaptation options help to considerably ameliorate the adverse situation under both scenarios. Our results reinforce the need for mitigation and adaptation to climate change.

Suggested Citation

  • Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
  • Handle: RePEc:bla:jageco:v:74:y:2023:i:1:p:75-99
    DOI: 10.1111/1477-9552.12490
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-9552.12490
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-9552.12490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briant, A. & Combes, P.-P. & Lafourcade, M., 2010. "Dots to boxes: Do the size and shape of spatial units jeopardize economic geography estimations?," Journal of Urban Economics, Elsevier, vol. 67(3), pages 287-302, May.
    2. Frances C. Moore & David B. Lobell, 2014. "Adaptation potential of European agriculture in response to climate change," Nature Climate Change, Nature, vol. 4(7), pages 610-614, July.
    3. Emanuele Massetti & Robert Mendelsohn, 2011. "Estimating Ricardian Models With Panel Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 301-319.
    4. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    5. Plümper, Thomas & Troeger, Vera E., 2007. "Efficient Estimation of Time-Invariant and Rarely Changing Variables in Finite Sample Panel Analyses with Unit Fixed Effects," Political Analysis, Cambridge University Press, vol. 15(2), pages 124-139, April.
    6. Wooldridge, Jeffrey M., 2019. "Correlated random effects models with unbalanced panels," Journal of Econometrics, Elsevier, vol. 211(1), pages 137-150.
    7. Emanuele Massetti & Robert Mendelsohn, 2018. "Measuring Climate Adaptation: Methods and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(2), pages 324-341.
    8. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    9. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    10. Daron Acemoglu & Simon Johnson & James A. Robinson & Pierre Yared, 2008. "Income and Democracy," American Economic Review, American Economic Association, vol. 98(3), pages 808-842, June.
    11. Esarey, Justin & Menger, Andrew, 2019. "Practical and Effective Approaches to Dealing With Clustered Data," Political Science Research and Methods, Cambridge University Press, vol. 7(3), pages 541-559, July.
    12. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(03), pages 1-21, September.
    13. Ayala Wineman & Nicole M. Mason & Justus Ochieng & Lilian Kirimi, 2017. "Weather extremes and household welfare in rural Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 281-300, April.
    14. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    15. Auffhammer, Maximilian & Schlenker, Wolfram, 2014. "Empirical studies on agricultural impacts and adaptation," Energy Economics, Elsevier, vol. 46(C), pages 555-561.
    16. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    17. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    18. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    19. Salvatore Di Falco & Felice Adinolfi & Martina Bozzola & Fabian Capitanio, 2014. "Crop Insurance as a Strategy for Adapting to Climate Change," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 485-504, June.
    20. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    21. Robert O. Mendelsohn & Emanuele Massetti, 2017. "The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 280-298.
    22. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    23. Riju Joshi & Jeffrey M. Wooldridge, 2019. "Correlated Random Effects Models with Endogenous Explanatory Variables and Unbalanced Panels," Annals of Economics and Statistics, GENES, issue 134, pages 243-268.
    24. Massetti, Emanuele & Mendelsohn, Robert & Chonabayashi, Shun, 2016. "How well do degree days over the growing season capture the effect of climate on farmland values?," Energy Economics, Elsevier, vol. 60(C), pages 144-150.
    25. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    26. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    27. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    28. Trong Anh Trinh, 2018. "The Impact of Climate Change on Agriculture: Findings from Households in Vietnam," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 897-921, December.
    29. Emanuele Massetti & Robert Mendelsohn, 2020. "Temperature thresholds and the effect of warming on American farmland value," Climatic Change, Springer, vol. 161(4), pages 601-615, August.
    30. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    31. Rao, Narasimha D., 2013. "Does (better) electricity supply increase household enterprise income in India?," Energy Policy, Elsevier, vol. 57(C), pages 532-541.
    32. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    33. Tim Büthe & Helen V. Milner, 2008. "The Politics of Foreign Direct Investment into Developing Countries: Increasing FDI through International Trade Agreements?," American Journal of Political Science, John Wiley & Sons, vol. 52(4), pages 741-762, October.
    34. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    35. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    36. Kirchner, Mathias & Mitter, Hermine & Schönhart, Martin & Schmid, Erwin, 2014. "Integrated land use modelling to analyse climate change adaptation in Austrian agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182944, European Association of Agricultural Economists.
    37. Kirchner, Mathias & Schmidt, Johannes & Kindermann, Georg & Kulmer, Veronika & Mitter, Hermine & Prettenthaler, Franz & Rüdisser, Johannes & Schauppenlehner, Thomas & Schönhart, Martin & Strauss, Fran, 2015. "Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies," Ecological Economics, Elsevier, vol. 109(C), pages 161-174.
    38. Colin Carter & Xiaomeng Cui & Dalia Ghanem & Pierre Mérel, 2018. "Identifying the Economic Impacts of Climate Change on Agriculture," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 361-380, October.
    39. De Salvo, Maria & Raffaelli, Roberta & Moser, Riccarda, 2013. "The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis," Agricultural Systems, Elsevier, vol. 118(C), pages 23-32.
    40. Schönhart, Martin & Trautvetter, Helene & Parajka, Juraj & Blaschke, Alfred Paul & Hepp, Gerold & Kirchner, Mathias & Mitter, Hermine & Schmid, Erwin & Strenn, Birgit & Zessner, Matthias, 2018. "Modelled impacts of policies and climate change on land use and water quality in Austria," Land Use Policy, Elsevier, vol. 76(C), pages 500-514.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    2. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    3. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    4. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    5. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    6. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    7. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    8. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    9. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    10. Zeilinger, Julian & Niedermayr, Andreas & Quddoos, Abdul & Kantelhardt, Jochen, 2021. "Identifying the Extent of Farm-Level Climate Change Adaptation," 2021 Conference, August 17-31, 2021, Virtual 315233, International Association of Agricultural Economists.
    11. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    12. Farnaz Pourzand & Kendom Bell, 2021. "How climate affects agricultural land values in Aotearoa New Zealand," Working Papers 21_16, Motu Economic and Public Policy Research.
    13. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    14. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    15. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    16. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).
    17. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    18. Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.
    19. Sayed Morteza Malaekeh & Layla Shiva & Ammar Safaie, 2024. "Investigating the economic impact of climate change on agriculture in Iran: Spatial spillovers matter," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 433-453, May.
    20. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jageco:v:74:y:2023:i:1:p:75-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0021-857X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.