IDEAS home Printed from https://ideas.repec.org/p/pdn/dispap/72.html
   My bibliography  Save this paper

Accounting for Heuristics in Reputation Systems: An Interdisciplinary Approach on Aggregation Processes

Author

Listed:
  • Dirk van Straaten

    (Paderborn University)

  • Vitalik Melnikov

    (Paderborn University)

  • Eyke Hüllermeier

    (Ludwig-Maximilians-University Munich)

  • Behnud Mir Djawadi

    (Paderborn University)

  • René Fahr

    (Paderborn University)

Abstract

Aggregation metrics in reputation systems are important for overcoming information overload. When using these metrics, technical aggregation functions such as the arithmetic mean are implemented to measure the valence of product ratings. However, it is unclear whether the implemented aggregation functions match the inherent aggregation patterns of customers. In our experiment, we elicit customers' aggregation heuristics and contrast these with reference functions. Our findings indicate that, overall, the arithmetic mean performs best in comparison with other aggregation functions. However, our analysis on an individual level reveals heterogeneous aggregation patterns. Major clusters exhibit a binary bias (i.e., an over-weighting of moderate ratings and under-weighting of extreme ratings) in combination with the arithmetic mean. Minor clusters focus on 1-star ratings or negative (i.e., 1-star and 2-star) ratings. Thereby, inherent aggregation patterns are neither affected by variation of provided information nor by individual characteristics such as experience, risk attitudes, or demographics.

Suggested Citation

  • Dirk van Straaten & Vitalik Melnikov & Eyke Hüllermeier & Behnud Mir Djawadi & René Fahr, 2021. "Accounting for Heuristics in Reputation Systems: An Interdisciplinary Approach on Aggregation Processes," Working Papers Dissertations 72, Paderborn University, Faculty of Business Administration and Economics.
  • Handle: RePEc:pdn:dispap:72
    as

    Download full text from publisher

    File URL: http://groups.uni-paderborn.de/wp-wiwi/RePEc/pdf/dispap/DP72.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    2. Ben Greiner, 2015. "Subject pool recruitment procedures: organizing experiments with ORSEE," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 1(1), pages 114-125, July.
    3. Bella Rozenkrants & S Christian Wheeler & Baba Shiv & Gita JoharEditor & Derek RuckerAssociate Editor, 2017. "Self-Expression Cues in Product Rating Distributions: When People Prefer Polarizing Products," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(4), pages 759-777.
    4. Kar Yan Tam & Shuk Ying Ho, 2005. "Web Personalization as a Persuasion Strategy: An Elaboration Likelihood Model Perspective," Information Systems Research, INFORMS, vol. 16(3), pages 271-291, September.
    5. Ioana Marinescu & Nadav Klein & Andrew Chamberlain & Morgan Smart, 2018. "Incentives Can Reduce Bias in Online Reviews," NBER Working Papers 24372, National Bureau of Economic Research, Inc.
    6. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    7. Chrysanthos Dellarocas, 2005. "Reputation Mechanism Design in Online Trading Environments with Pure Moral Hazard," Information Systems Research, INFORMS, vol. 16(2), pages 209-230, June.
    8. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    9. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    10. Camilleri, Adrian R., 2017. "The Presentation Format of Review Score Information Influences Consumer Preferences Through the Attribution of Outlier Reviews," Journal of Interactive Marketing, Elsevier, vol. 39(C), pages 1-14.
    11. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    12. Tibor Besedeš & Cary Deck & Sudipta Sarangi & Mikhael Shor, 2012. "Age Effects and Heuristics in Decision Making," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 580-595, May.
    13. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    14. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    15. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
    16. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    17. Stephen X. He & Samuel D. Bond, 2015. "Why Is the Crowd Divided? Attribution for Dispersion in Online Word of Mouth," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 41(6), pages 1509-1527.
    18. Yaniv, Ilan, 1997. "Weighting and Trimming: Heuristics for Aggregating Judgments under Uncertainty," Organizational Behavior and Human Decision Processes, Elsevier, vol. 69(3), pages 237-249, March.
    19. Mousavi, Shabnam & Gigerenzer, Gerd, 2014. "Risk, uncertainty, and heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1671-1678.
    20. Yi-Chun (Chad) Ho & Junjie Wu & Yong Tan, 2017. "Disconfirmation Effect on Online Rating Behavior: A Structural Model," Information Systems Research, INFORMS, vol. 28(3), pages 626-642, September.
    21. Britta Hoyer & Dirk van Straaten, 2021. "Anonymity and Self-Expression in Online Rating Systems - An Experimental Analysis," Working Papers Dissertations 70, Paderborn University, Faculty of Business Administration and Economics.
    22. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk van Straaten & René Fahr, 2021. "Fighting Fire with Fire - Overcoming Ambiguity Aversion by Introducing more Ambiguity," Working Papers Dissertations 73, Paderborn University, Faculty of Business Administration and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    2. Xiang Hui & Tobias J. Klein & Konrad Stahl, 2021. "When and Why Do Buyers Rate in Online Markets?," CRC TR 224 Discussion Paper Series crctr224_2021_267v1, University of Bonn and University of Mannheim, Germany.
    3. Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022. "Learning from Online Ratings," CEPR Discussion Papers 17006, C.E.P.R. Discussion Papers.
    4. Jürgen Neumann, 2021. "When Biased Ratings Benefit the Consumer - An Economic Analysis of Online Ratings in Markets with Variety-Seeking Consumers," Working Papers Dissertations 77, Paderborn University, Faculty of Business Administration and Economics.
    5. Zhen Li & Fangzhou Li & Jing Xiao & Zhi Yang, 2020. "Topic Features in Negative Customer Reviews: Evidence Based on Text Data Mining," The Review of Socionetwork Strategies, Springer, vol. 14(1), pages 19-40, April.
    6. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    7. Heeseung Andrew Lee & Angela Aerry Choi & Tianshu Sun & Wonseok Oh, 2021. "Reviewing Before Reading? An Empirical Investigation of Book-Consumption Patterns and Their Effects on Reviews and Sales," Information Systems Research, INFORMS, vol. 32(4), pages 1368-1389, December.
    8. Marios Kokkodis & Theodoros Lappas, 2020. "Your Hometown Matters: Popularity-Difference Bias in Online Reputation Platforms," Information Systems Research, INFORMS, vol. 31(2), pages 412-430, June.
    9. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
    10. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.
    11. Greiff, Matthias & Paetzel, Fabian, 2020. "Information about average evaluations spurs cooperation: An experiment on noisy reputation systems," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 334-356.
    12. Janina Seutter & Kristin Kutzner & Maren Stadtländer & Dennis Kundisch & Ralf Knackstedt, 2023. "“Sorry, too much information”—Designing online review systems that support information search and processing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-19, December.
    13. Marios Kokkodis & Theodoros Lappas & Gerald C. Kane, 2022. "Optional purchase verification in e‐commerce platforms: More representative product ratings and higher quality reviews," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2943-2961, July.
    14. Krügel, Jan Philipp & Paetzel, Fabian, 2024. "The impact of fraud on reputation systems," Games and Economic Behavior, Elsevier, vol. 144(C), pages 329-354.
    15. Jürgen Neumann & Dominik Gutt & Dennis Kundisch, 2018. "The Traveling Reviewer Problem – Exploring the Relationship between Offline Locations and Online Rating Behavior," Working Papers Dissertations 44, Paderborn University, Faculty of Business Administration and Economics.
    16. Taeuscher, Karl, 2019. "Reputation and new venture performance in online markets: The moderating role of market crowding," Journal of Business Venturing, Elsevier, vol. 34(6).
    17. Foster, Joshua, 2022. "How rating mechanisms shape user search, quality inference and engagement in online platforms: Experimental evidence," Journal of Business Research, Elsevier, vol. 142(C), pages 791-807.
    18. Marios Kokkodis, 2021. "Dynamic, Multidimensional, and Skillset-Specific Reputation Systems for Online Work," Information Systems Research, INFORMS, vol. 32(3), pages 688-712, September.
    19. Moon, Sangkil & Kim, Moon-Yong & Iacobucci, Dawn, 2021. "Content analysis of fake consumer reviews by survey-based text categorization," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 343-364.
    20. Arslan Aziz & Hui Li & Rahul Telang, 2023. "The Consequences of Rating Inflation on Platforms: Evidence from a Quasi-Experiment," Information Systems Research, INFORMS, vol. 34(2), pages 590-608, June.

    More about this item

    Keywords

    customer reviews; aggregation; heuristics; binary bias; arithmetic mean;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pdn:dispap:72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WP-WiWi-Info (email available below). General contact details of provider: https://edirc.repec.org/data/fwpadde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.