IDEAS home Printed from https://ideas.repec.org/a/kap/mktlet/v35y2024i4d10.1007_s11002-024-09729-3.html
   My bibliography  Save this article

The Turing test of online reviews: Can we tell the difference between human-written and GPT-4-written online reviews?

Author

Listed:
  • Balázs Kovács

    (Yale University)

Abstract

Online reviews serve as a guide for consumer choice. With advancements in large language models (LLMs) and generative AI, the fast and inexpensive creation of human-like text may threaten the feedback function of online reviews if neither readers nor platforms can differentiate between human-written and AI-generated content. In two experiments, we found that humans cannot recognize AI-written reviews. Even with monetary incentives for accuracy, both Type I and Type II errors were common: human reviews were often mistaken for AI-generated reviews, and even more frequently, AI-generated reviews were mistaken for human reviews. This held true across various ratings, emotional tones, review lengths, and participants’ genders, education levels, and AI expertise. Younger participants were somewhat better at distinguishing between human and AI reviews. An additional study revealed that current AI detectors were also fooled by AI-generated reviews. We discuss the implications of our findings on trust erosion, manipulation, regulation, consumer behavior, AI detection, market structure, innovation, and review platforms.

Suggested Citation

  • Balázs Kovács, 2024. "The Turing test of online reviews: Can we tell the difference between human-written and GPT-4-written online reviews?," Marketing Letters, Springer, vol. 35(4), pages 651-666, December.
  • Handle: RePEc:kap:mktlet:v:35:y:2024:i:4:d:10.1007_s11002-024-09729-3
    DOI: 10.1007/s11002-024-09729-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11002-024-09729-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11002-024-09729-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:35:y:2024:i:4:d:10.1007_s11002-024-09729-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.