IDEAS home Printed from https://ideas.repec.org/p/nse/doctra/m2023-02.html
   My bibliography  Save this paper

Redressements de la premiere vague de l’enquete EpiCov : un exemple de correction des effets de selection dans les enquetes multimodes

Author

Listed:
  • L. CASTELL

    (Insee)

  • C. FAVRE-MARTINOZ

    (Insee)

  • N. PALIOD

    (Insee)

  • P. SILLARD

    (Insee)

Abstract

La première vague de l’enquête Épidémiologie et Conditions de vie (EpiCov) a été collectée en mai 2020 dans le contexte de la pandémie de Covid-19 pour en mesurer l’impact sanitaire et social. Cette enquête est originale à plusieurs titres : thématique, objectif de diffusion départementale, mode de collecte essentiellement auto-administrée, réalisation d’auto-prélèvements. Ce document de travail décrit les redressements réalisés par l’Insee sur la première vague de l’enquête pour s’assurer de la qualité des résultats. Ces redressements prennent en compte les spécificités de l’enquête pour corriger le biais de non-réponse, concernant d’une part le questionnaire et d’autre part les auto-prélèvements. Cependant, ces méthodes de correction usuelles ne s’avèrent pas suffisantes pour corriger certaines variables d’intérêt de l’enquête comme les symptômes déclarés dans l’enquête qui ont affecté les répondants. En théorie, le biais observé sur ces variables peut s’expliquer par une erreur de mesure, liée à l’utilisation de plusieurs modes de collecte, ou par l’existence d’une sélection liée, de manière résiduelle, aux variables d’intérêt, non corrigée par les méthodes de correction de la non-réponse sur variables observables. On montre dans ce document que le biais procède d’une sélection liée aux variables d’intérêt et non d'une erreur de mesure associée au mode. Une méthode de correction de la sélection liée aux variables d’intérêt, basée sur un modèle de sélection d’Heckman, est mise en œuvre pour estimer sans biais les valeurs moyennes des variables d’intérêt concernées. Pour les variables de symptômes, la correction peut représenter plus de 50 % du niveau de prévalence déclaré non-corrigé. Cette correction conduit à réduire le niveau de prévalence des symptômes, conformément à l’idée selon laquelle les répondants à l’enquête semblent, en moyenne, davantage affectés par les symptômes de la maladie que les non-répondants.

Suggested Citation

  • L. Castell & C. Favre-Martinoz & N. Paliod & P. Sillard, 2023. "Redressements de la premiere vague de l’enquete EpiCov : un exemple de correction des effets de selection dans les enquetes multimodes," Documents de Travail de l'Insee - INSEE Working Papers m2023-02, Institut National de la Statistique et des Etudes Economiques.
  • Handle: RePEc:nse:doctra:m2023-02
    as

    Download full text from publisher

    File URL: https://www.insee.fr/fr/statistiques/fichier/version-html/7452990/M2023-02.pdf
    File Function: Document de travail "Méthodologie Statistique" de la DMCSI numéro M2023/02
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Haziza & Jean‐François Beaumont, 2007. "On the Construction of Imputation Classes in Surveys," International Statistical Review, International Statistical Institute, vol. 75(1), pages 25-43, April.
    2. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    3. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    4. L. Castell & P. Sillard, 2021. "Le traitement du biais de selection endogene dans les enquetes aupres des menages par modele de Heckman," Documents de Travail de l'Insee - INSEE Working Papers m2021-02, Institut National de la Statistique et des Etudes Economiques.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey Smith, 2000. "A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(III), pages 247-268, September.
    2. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    3. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    4. Pierre-Philippe Combes & Bruno Decreuse & Morgane Laouénan & Alain Trannoy, 2016. "Customer Discrimination and Employment Outcomes: Theory and Evidence from the French Labor Market," Journal of Labor Economics, University of Chicago Press, vol. 34(1), pages 107-160.
    5. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    6. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    8. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    9. Pierre-Philippe Combes & Bruno Decreuse & Morgane Laouénan & Alain Trannoy, 2016. "Customer Discrimination and Employment Outcomes: Theory and Evidence from the French Labor Market," Journal of Labor Economics, University of Chicago Press, vol. 34(1), pages 107-160.
    10. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    11. Steven D. Levitt & Jack Porter, 2001. "Sample Selection In The Estimation Of Air Bag And Seat Belt Effectiveness," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 603-615, November.
    12. Zamarro, Gema, 2010. "Accounting for heterogeneous returns in sequential schooling decisions," Journal of Econometrics, Elsevier, vol. 156(2), pages 260-276, June.
    13. Salanié, Bernard & Lee, Sokbae, 2020. "Filtered and Unfiltered Treatment Effects with Targeting Instruments," CEPR Discussion Papers 15092, C.E.P.R. Discussion Papers.
    14. repec:zbw:rwidps:0023 is not listed on IDEAS
    15. Eva Deuchert & Martin Huber, 2017. "A Cautionary Tale About Control Variables in IV Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
    16. Ogundari, Kolawole, 2021. "A systematic review of statistical methods for estimating an education production function," MPRA Paper 105283, University Library of Munich, Germany.
    17. Fossen, Frank M. & Büttner, Tobias J.M., 2013. "The returns to education for opportunity entrepreneurs, necessity entrepreneurs, and paid employees," Economics of Education Review, Elsevier, vol. 37(C), pages 66-84.
    18. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    19. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    20. Albert Saiz & Elena Zoido, 2002. "The returns to speaking a second language," Working Papers 02-16, Federal Reserve Bank of Philadelphia.
    21. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.

    More about this item

    Keywords

    EpiCov; enquete; multimode; selection endogene; modele d’Heckman; non-reponse;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:doctra:m2023-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INSEE (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.