IDEAS home Printed from https://ideas.repec.org/p/nse/doctra/m2021-02.html
   My bibliography  Save this paper

Le traitement du biais de sélection endogène dans les enquêtes auprès des ménages par modèle de Heckman

Author

Listed:
  • L. CASTELL

    (Insee)

  • P. SILLARD

    (Insee)

Abstract

Ce document de travail a pour objectif de d'écrire les conditions dans lesquelles le biais de sélection lié à la nonréponse dans les enquêtes auprès des ménages peut être corrigé. Généralement, les méthodes de correction mises en oeuvre font l’hypothèse d’un mécanisme de non-réponse ignorable. Cependant, lorsqu’il existe un problème de non-réponse endogène, alors le mécanisme de non-réponse n’est plus ignorable, et les estimateurs issus des méthodes de correction classiques sont biaisés. Pour corriger ce biais, nous proposons une pondération issue d’un modèle de Heckman. Ce modèle consiste à modéliser simultanément la participation et la variable d’intérêt que l’on cherche à estimer. L’identification du modèle est cependant conditionnée à un certain nombre d’hypothèses, comme l’existence d’un instrument, explicatif de la participation mais pas de la variable d’intérêt. Pour disposer d’un tel instrument, un protocole adapté avec des sous-échantillons indépendants peut être mis en place. Ce document détaille les conditions sous lesquelles ce type de protocole permet une estimation corrigée de la sélection endogène.

Suggested Citation

  • L. Castell & P. Sillard, 2021. "Le traitement du biais de sélection endogène dans les enquêtes auprès des ménages par modèle de Heckman," Documents de Travail de l'Insee - INSEE Working Papers m2021-02, Institut National de la Statistique et des Etudes Economiques.
  • Handle: RePEc:nse:doctra:m2021-02
    as

    Download full text from publisher

    File URL: https://www.insee.fr/fr/statistiques/fichier/version-html/5237610/M2021-02_Modele_de_Heckman_12_avril_2021.pdf
    File Function: Document de travail "Méthodologie Statistique" de la DMCSI numéro M2021/02
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel O. Ogundimu & Jane L. Hutton, 2016. "A unified approach to multilevel sample selection models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(9), pages 2592-2611, May.
    2. Eric J. Tchetgen Tchetgen & Kathleen E. Wirth, 2017. "A general instrumental variable framework for regression analysis with outcome missing not at random," Biometrics, The International Biometric Society, vol. 73(4), pages 1123-1131, December.
    3. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    4. Luc Behaghel & Bruno Crépon & Marc Gurgand & Thomas Le Barbanchon, 2015. "Please Call Again: Correcting Nonresponse Bias in Treatment Effect Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1070-1080, December.
    5. Toomet, Ott & Henningsen, Arne, 2008. "Sample Selection Models in R: Package sampleSelection," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i07).
    6. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    7. Éric Lesage & David Haziza & Xavier D’Haultfœuille, 2019. "A Cautionary Tale on Instrumental Calibration for the Treatment of Nonignorable Unit Nonresponse in Surveys," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 906-915, April.
    8. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    9. Wing, Coady, 2019. "What Can Instrumental Variables Tell Us About Nonresponse In Household Surveys and Political Polls?," Political Analysis, Cambridge University Press, vol. 27(3), pages 320-338, July.
    10. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    11. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    12. Maria Fraga O. Martins, 2001. "Parametric and semiparametric estimation of sample selection models: an empirical application to the female labour force in Portugal," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(1), pages 23-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    2. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    3. Mark McGovern & David Canning & Till Bärnighausen, 2018. "Accounting for Non-Response Bias using Participation Incentives and Survey Design," CHaRMS Working Papers 18-02, Centre for HeAlth Research at the Management School (CHaRMS).
    4. Clément de Chaisemartin, 2017. "Tolerating defiance? Local average treatment effects without monotonicity," Quantitative Economics, Econometric Society, vol. 8(2), pages 367-396, July.
    5. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    6. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    7. Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020. "Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
    8. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    9. Marra, Giampiero & Radice, Rosalba, 2013. "Estimation of a regression spline sample selection model," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 158-173.
    10. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    11. Domenico Depalo & Santiago Pereda-Fernández, 2020. "Consistent estimates of the public/private wage gap," Empirical Economics, Springer, vol. 58(6), pages 2937-2947, June.
    12. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    13. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    15. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    16. Zamarro, Gema, 2010. "Accounting for heterogeneous returns in sequential schooling decisions," Journal of Econometrics, Elsevier, vol. 156(2), pages 260-276, June.
    17. Salanié, Bernard & Lee, Sokbae, 2020. "Filtered and Unfiltered Treatment Effects with Targeting Instruments," CEPR Discussion Papers 15092, C.E.P.R. Discussion Papers.
    18. Eva Deuchert & Martin Huber, 2017. "A Cautionary Tale About Control Variables in IV Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
    19. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    20. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.

    More about this item

    Keywords

    non-response; Heckman model; survey; sampling;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:doctra:m2021-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INSEE (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.