IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v75y2007i1p25-43.html
   My bibliography  Save this article

On the Construction of Imputation Classes in Surveys

Author

Listed:
  • David Haziza
  • Jean‐François Beaumont

Abstract

This paper explores the problem of the construction of imputation classes using the score method, sometimes called predictive mean stratification or response propensity stratification, depending on the context. This method was studied in Thomsen (1973), Little (1986) and Eltinge & Yansaneh (1997). We use a different framework to evaluate the properties of the resulting imputed estimator of a population mean. In our framework, we condition on the realized sample. This enables us to considerably simplify our theoretical developments in the frequent situation where the boundaries and the number of classes are sample‐dependent. We find that the key factor for reducing the non‐response bias is to form classes homogeneous with respect to the response probabilities and/or the conditional expectation of the variable of interest. In the latter case, the non‐response/imputation variance is also reduced. Finally, we performed a simulation study to fully evaluate various versions of the score method and to compare them with a cross‐classification method, which is frequently used in practice. The results showed the superiority of the score method in general. Cet article étudie la construction des classes d'imputation par la méthode des scores, appelée également stratification par moyenne prédite ou stratification par propensité de réponse selon le contexte. Cette méthode a étéétudiée par Thomsen (1973), Little (1986) et Eltinge et Yansaneh (1997). Nous utilisons un cadre de travail différent permettant d'évaluer les propriétés de l'estimateur imputé de la moyenne de la population selon lequel nous conditionnons sur l'échantillon réalisé. Ceci nous permet de simplifier considérablement les développements théoriques lorsque les bornes et le nombre de classes dépendent de l'échantillon, ce qui survient fréquemment en pratique. Nous déterminons que le facteur clé permettant de réduire le biais du à la non‐réponse est de former des classes qui soient homogènes par rapport aux probabilités de réponse et/ou à l'espérance conditionnelle de la variable d'intérêt. Dans ce dernier cas, la variance due à la non‐réponse et à l'imputation est également réduite. Finalement, nous effectuons une étude par simulation afin d'évaluer en profondeur plusieurs versions de la méthode des scores et de comparer celles‐ci avec la méthode par croisement qui est fréquemment utilisée en pratique. Les résultats obtenus montrent la supériorité de la méthode des scores en général.

Suggested Citation

  • David Haziza & Jean‐François Beaumont, 2007. "On the Construction of Imputation Classes in Surveys," International Statistical Review, International Statistical Institute, vol. 75(1), pages 25-43, April.
  • Handle: RePEc:bla:istatr:v:75:y:2007:i:1:p:25-43
    DOI: 10.1111/j.1751-5823.2006.00002.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2006.00002.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2006.00002.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceriani, Lidia & Hlasny, Vladimir & Verme, Paolo, 2021. "Bottom Incomes and the Measurement of Poverty: A Brief Assessment of the Literature," GLO Discussion Paper Series 914, Global Labor Organization (GLO).
    2. Yves G. Berger & Emilio L. Escobar, 2017. "Variance Estimation of Imputed Estimators of Change for Repeated Rotating Surveys," International Statistical Review, International Statistical Institute, vol. 85(3), pages 421-438, December.
    3. Nathalie de Marcellis-Warin & Ingrid Peignier, 2021. "Perception des risques au Québec - Baromètre CIRANO 2021," CIRANO Papers 2021li-01, CIRANO.
    4. Vladimir Hlasny & Lidia Ceriani & Paolo Verme, 2022. "Bottom Incomes and the Measurement of Poverty and Inequality," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 970-1006, December.
    5. Osier, Guillaume, 2016. "Unit non-response in household wealth surveys," Statistics Paper Series 15, European Central Bank.
    6. repec:bla:istatr:v:83:y:2015:i:3:p:472-492 is not listed on IDEAS
    7. Nathalie de Marcellis-Warin & Ingrid Peignier, 2022. "Baromètre de la confiance des consommateurs québécois à l’égard des aliments -2e édition - Édition complète," CIRANO Project Reports 2022rp-18, CIRANO.
    8. Yves G. Berger, 2020. "An empirical likelihood approach under cluster sampling with missing observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 91-121, February.
    9. Wayne A. Fuller, 2022. "Post‐strata based on sample quantiles," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1504-1521, October.
    10. Jin-Ling Yan & Yong-Jie Xue & Muhammad Mohsin, 2022. "Accessing Occupational Health Risks Posed by Fishermen Based on Fuzzy AHP and IPA Methods: Management and Performance Perspectives," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    11. Helene Boistard & Guillaume Chauvet & David Haziza, 2016. "Doubly Robust Inference for the Distribution Function in the Presence of Missing Survey Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 683-699, September.
    12. Nathalie de Marcellis-Warin & Ingrid Peignier & Thomas Gleize, 2023. "Baromètre de la confiance des consommateurs québécois à l’égard des aliments -3e édition," CIRANO Project Reports 2023rp-09, CIRANO.
    13. Encarnación Álvarez-Verdejo & Pablo J. Moya-Fernández & Juan F. Muñoz-Rosas, 2021. "Single Imputation Methods and Confidence Intervals for the Gini Index," Mathematics, MDPI, vol. 9(24), pages 1-20, December.
    14. West Brady T. & Sakshaug Joseph W. & Aurelien Guy Alain S., 2018. "Accounting for Complex Sampling in Survey Estimation: A Review of Current Software Tools," Journal of Official Statistics, Sciendo, vol. 34(3), pages 721-752, September.
    15. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    16. Heng Chen & Marie-Hélène Felt & Christopher Henry, 2018. "2017 Methods-of-Payment Survey: Sample Calibration and Variance Estimation," Technical Reports 114, Bank of Canada.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:75:y:2007:i:1:p:25-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.