IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/i-35w-trb2009-sger.html
   My bibliography  Save this paper

The traffic and behavioral effects of the I-35W Mississippi River bridge collapse

Author

Listed:
  • Shanjiang Zhu
  • David Levinson
  • Henry Liu
  • Kathleen Harder

    (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

The collapse, on August 1, 2007, of the I-35W bridge over the Mississippi River in Minneapolis, abruptly interrupted the usual route of about 140,000 daily vehicle trips and substantially disturbed the ßow pattern on the network. It took several weeks for the network to re-equilibrate, during which period, travelers continued to learn and adjust their travel decisions. A good understanding of this process is crucial for traffic management and designing mitigation schemes. A survey collected behavioral responses to the bridge collapse. Traffic data were also collected to understand the traffic conditions experienced by road users. Data from both resources are analyzed and compared. Findings of behavioral effects of capacity changes could have significant implications for travel demand modeling, especially of day-to-day travel demand

Suggested Citation

  • Shanjiang Zhu & David Levinson & Henry Liu & Kathleen Harder, 2008. "The traffic and behavioral effects of the I-35W Mississippi River bridge collapse," Working Papers 201001, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:i-35w-trb2009-sger
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/179994
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Levinson & Kathleen Harder & John Bloomfield & Kathy Carlson, 2006. "Waiting Tolerance: Ramp Delay vs. Freeway Congestion," Working Papers 200602, University of Minnesota: Nexus Research Group.
    2. David A. Hensher & Ann M. Brewer, 2002. "Going for gold at the Sydney Olympics: How did transport perform?," Transport Reviews, Taylor & Francis Journals, vol. 22(4), pages 381-399, January.
    3. P.B. Goodwin, 1977. "Habit and Hysteresis in Mode Choice," Urban Studies, Urban Studies Journal Limited, vol. 14(1), pages 95-98, February.
    4. Agachai Sumalee & Fumitaka Kurauchi, 2006. "Network Capacity Reliability Analysis Considering Traffic Regulation after a Major Disaster," Networks and Spatial Economics, Springer, vol. 6(3), pages 205-219, September.
    5. Chang, Stephanie E. & Nojima, Nobuoto, 2001. "Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 475-494, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    2. Nazmul Arefin Khan & Muhammad Ahsanul Habib, 2018. "Evaluation of Preferences for Alternative Transportation Services and Loyalty towards Active Transportation during a Major Transportation Infrastructure Disruption," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    3. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    4. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.
    5. Beria, Paolo & Laurino, Antonio, 2016. "Determinants of daily fluctuations in air passenger volumes. The effect of events and holidays on Milan Malpensa airport," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 73-84.
    6. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    7. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    8. Shanjiang Zhu & Nebiyou Tilahun & Xiaozheng He & David M. Levinson, 2012. "Travel Impacts and Adjustment Strategies of the Collapse and the Reopening of the I-35W Bridge," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 21-36, Springer.
    9. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    10. Kenneth Button & Brien Benson, 2013. "Handling biases in forecasting when making transportation policy," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 4, pages 49-67, Edward Elgar Publishing.
    11. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    12. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    13. He, Sylvia Y. & Tao, Sui & Sun, Ka Kit, 2024. "Attitudes towards public transport under extended disruptions and massive-scale transit dysfunction: A Hong Kong case study," Transport Policy, Elsevier, vol. 149(C), pages 247-258.
    14. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    15. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    16. Barahimi, Amir Hossein & Eydi, Alireza & Aghaie, Abdolah, 2021. "Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Zheng, Zuduo & Washington, Simon & Hyland, Paul & Sloan, Keith & Liu, Yulin, 2016. "Preference heterogeneity in mode choice based on a nationwide survey with a focus on urban rail," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 178-194.
    18. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    19. Zhou, Jiangping, 2012. "Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1013-1029.
    20. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.

    More about this item

    Keywords

    Minnesota; Minneapolis; I-35W bridge collapse; travel behavior; travel survey;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:i-35w-trb2009-sger. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.