IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v6y2006i3p205-219.html
   My bibliography  Save this article

Network Capacity Reliability Analysis Considering Traffic Regulation after a Major Disaster

Author

Listed:
  • Agachai Sumalee
  • Fumitaka Kurauchi

Abstract

The focuses of this paper are optimal traffic regulation after a major disaster and evaluation of capacity reliability of a network. The paper firstly discusses the context of traffic regulation and its importance after a major disaster. Then, this problem is formulated as an optimisation program in which the traffic regulator attempts to regulate the amount of traffic movements or access to some areas so as to maximise the traffic volumes in the network while (a) link flows must be less than link capacities and (b) re-routing effect due to changes of traffic condition in the network is allowed. The re-routing behaviour is assumed to follow Probit Stochastic User's Equilibrium (SUE). The paper explains an optimisation algorithm based on an implicit programming approach for solving this problem with the SUE condition. With this optimisation problem, the randomness of the link capacities (to represent random effects of the disaster) is introduced and the paper describes an approach to approximate the capacity reliability of the network using Monte-Carlo simulation. The paper then adopts this approach to evaluate the performances of different traffic regulation policies with a small network and a test network of Kobe city in Japan. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Agachai Sumalee & Fumitaka Kurauchi, 2006. "Network Capacity Reliability Analysis Considering Traffic Regulation after a Major Disaster," Networks and Spatial Economics, Springer, vol. 6(3), pages 205-219, September.
  • Handle: RePEc:kap:netspa:v:6:y:2006:i:3:p:205-219
    DOI: 10.1007/s11067-006-9280-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-006-9280-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-006-9280-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    2. Prema-chandra Athukorala & Budy P. Resosudarmo, 2005. "The Indian Ocean Tsunami: Economic Impact, Disaster Management, and Lessons," Asian Economic Papers, MIT Press, vol. 4(1), pages 1-39, Winter.
    3. Clark, Stephen D. & Watling, David P., 2002. "Sensitivity analysis of the probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 617-635, August.
    4. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    5. Clark, S. D., 2002. "Erratum to "Sensitivity analysis of the prohibit-based stochastic user equilibrium assignment model" by Stephen D. Clark and David P. Watling [Transportation Research Part B 36 (7) (2002) 61," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 851-851, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xinchang, 2017. "Static and dynamic resource allocation models for single-leg transportation markets with service disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 87-108.
    2. Turner, Jonathan P. & Qiao, Jianhong & Lawley, Mark & Richard, Jean-Philippe & Abraham, Dulcy M., 2012. "Mitigating shortage and distribution costs in damaged water networks," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 315-326.
    3. Zhu, Shanjiang & Levinson, David & Liu, Henry X. & Harder, Kathleen, 2010. "The traffic and behavioral effects of the I-35W Mississippi River bridge collapse," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 771-784, December.
    4. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    5. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    6. Barahimi, Amir Hossein & Eydi, Alireza & Aghaie, Abdolah, 2021. "Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Wang, Xinchang, 2016. "Stochastic resource allocation for containerized cargo transportation networks when capacities are uncertain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 334-357.
    8. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    9. Wang, Xinchang, 2016. "Optimal allocation of limited and random network resources to discrete stochastic demands for standardized cargo transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 310-331.
    10. Federico Rupi & Silvia Bernardi & Guido Rossi & Antonio Danesi, 2015. "The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study," Networks and Spatial Economics, Springer, vol. 15(2), pages 397-411, June.
    11. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    12. Lili Du & Srinivas Peeta, 2014. "A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through Pre-Disaster Investment Decisions," Networks and Spatial Economics, Springer, vol. 14(2), pages 271-295, June.
    13. Bo Zhang & Hongwei Ding & Hongbo Li & Wei Wang & Tao Yao, 2014. "A Sampling-Based Stochastic Winner Determination Model for Truckload Service Procurement," Networks and Spatial Economics, Springer, vol. 14(2), pages 159-181, June.
    14. Edrissi, Ali & Nourinejad, Mehdi & Roorda, Matthew J., 2015. "Transportation network reliability in emergency response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 56-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    2. Paramet Luathep & Agachai Sumalee & H. Ho & Fumitaka Kurauchi, 2011. "Large-scale road network vulnerability analysis: a sensitivity analysis based approach," Transportation, Springer, vol. 38(5), pages 799-817, September.
    3. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    4. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    5. Connors, Richard D. & Sumalee, Agachai & Watling, David P., 2007. "Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 593-615, July.
    6. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    7. Zhi-Chun Li & William Lam & S. Wong & Hai-Jun Huang & Dao-Li Zhu, 2008. "Reliability Evaluation for Stochastic and Time-dependent Networks with Multiple Parking Facilities," Networks and Spatial Economics, Springer, vol. 8(4), pages 355-381, December.
    8. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    9. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    10. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    11. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.
    12. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    13. Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
    14. PeCoy, Michael D. & Redmond, Michael A., 2023. "Flight reliability during periods of high uncertainty," Journal of Air Transport Management, Elsevier, vol. 106(C).
    15. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    16. Ng, ManWo & Szeto, W.Y. & Travis Waller, S., 2011. "Distribution-free travel time reliability assessment with probability inequalities," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 852-866, July.
    17. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    18. Nagae, Takeshi & Fujihara, Tomo & Asakura, Yasuo, 2012. "Anti-seismic reinforcement strategy for an urban road network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 813-827.
    19. Falck, Oliver & Heblich, Stephan & Link, Susanne, 2011. "The Evils of Forced Migration: Do Integration Policies Alleviate Migrants' Economic Situations?," Stirling Economics Discussion Papers 2011-14, University of Stirling, Division of Economics.
    20. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:6:y:2006:i:3:p:205-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.