IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v66y2014i3p577-609.html
   My bibliography  Save this article

Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers

Author

Listed:
  • Axel Finke
  • Adam Johansen
  • Dario Spanò

Abstract

We develop particle Gibbs samplers for static-parameter estimation in discretely observed piecewise deterministic process (PDPs). PDPs are stochastic processes that jump randomly at a countable number of stopping times but otherwise evolve deterministically in continuous time. A sequential Monte Carlo (SMC) sampler for filtering in PDPs has recently been proposed. We first provide new insight into the consequences of an approximation inherent within that algorithm. We then derive a new representation of the algorithm. It simplifies ensuring that the importance weights exist and also allows the use of variance-reduction techniques known as backward and ancestor sampling. Finally, we propose a novel Gibbs step that improves mixing in particle Gibbs samplers whose SMC algorithms make use of large collections of auxiliary variables, such as many instances of SMC samplers. We provide a comparison between the two particle Gibbs samplers for PDPs developed in this paper. Simulation results indicate that they can outperform reversible-jump MCMC approaches. Copyright The Institute of Statistical Mathematics, Tokyo 2014

Suggested Citation

  • Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
  • Handle: RePEc:spr:aistmt:v:66:y:2014:i:3:p:577-609
    DOI: 10.1007/s10463-014-0455-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-014-0455-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-014-0455-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. George Poyiadjis & Arnaud Doucet & Sumeetpal S. Singh, 2011. "Particle approximations of the score and observed information matrix in state space models with application to parameter estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 65-80.
    3. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    4. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    5. Nicolas Chopin & Sumeetpal S. Singh, 2013. "On the Particle Gibbs Sampler," Working Papers 2013-41, Center for Research in Economics and Statistics.
    6. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    7. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    8. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    9. Centanni, Silvia & Minozzo, Marco, 2006. "A Monte Carlo Approach to Filtering for a Class of Marked Doubly Stochastic Poisson Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1582-1597, December.
    10. van Dyk, David A. & Park, Taeyoung, 2008. "Partially Collapsed Gibbs Samplers: Theory and Methods," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 790-796, June.
    11. Johansen, Adam M. & Doucet, Arnaud, 2008. "A note on auxiliary particle filters," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1498-1504, September.
    12. repec:dau:papers:123456789/7305 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    2. Lau, F. Din-Houn & Gandy, Axel, 2014. "RMCMC: A system for updating Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 99-110.
    3. Crucinio, Francesca R. & Johansen, Adam M., 2023. "Properties of marginal sequential Monte Carlo methods," Statistics & Probability Letters, Elsevier, vol. 203(C).
    4. repec:bla:istatr:v:83:y:2015:i:3:p:405-435 is not listed on IDEAS
    5. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    6. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    7. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    8. Patrick Aschermayr & Konstantinos Kalogeropoulos, 2023. "Sequential Bayesian Learning for Hidden Semi-Markov Models," Papers 2301.10494, arXiv.org.
    9. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    10. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    11. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    12. Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
    13. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    14. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    15. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    16. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    17. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.
    18. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    19. Pierre Del Moral & Ajay Jasra & Yan Zhou, 2017. "Biased Online Parameter Inference for State-Space Models," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 727-749, September.
    20. Salima El Kolei, 2013. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1031-1081, November.
    21. Naoki Awaya & Yasuhiro Omori, 2019. "Particle rolling MCMC," CIRJE F-Series CIRJE-F-1110, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:66:y:2014:i:3:p:577-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.