IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v111y2012icp39-58.html
   My bibliography  Save this article

Combining quasi and empirical likelihoods in generalized linear models with missing responses

Author

Listed:
  • Liu, Tianqing
  • Yuan, Xiaohui

Abstract

By only specifying the conditional mean and variance functions of the response variable given covariates, the quasi-likelihood can produce valid semiparametric inference for regression parameter in generalized linear models (GLMs). However, in many studies, auxiliary information is available as moment restrictions of the marginal distribution of the response variable and covariates. We propose the combined quasi and empirical likelihood (CQEL) to incorporate such auxiliary information to improve the efficiency of parameter estimation of the quasi-likelihood in GLMs with missing responses. We show that, when assuming responses are missing at random (MAR), the CQEL estimator achieves better efficiency than the maximum quasi-likelihood (MQL) estimator due to utilization of the auxiliary information. When there is no auxiliary information, we show that the CQEL estimator of the mean response is more efficient than the existing imputation estimators. Based on the asymptotic property of the CQEL estimator, we also develop Wilks’ type tests and corresponding confidence regions for the regression parameter and mean response. The merits of the CQEL are further illustrated through simulation studies.

Suggested Citation

  • Liu, Tianqing & Yuan, Xiaohui, 2012. "Combining quasi and empirical likelihoods in generalized linear models with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 39-58.
  • Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:39-58
    DOI: 10.1016/j.jmva.2012.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guido W. Imbens & Tony Lancaster, 1994. "Combining Micro and Macro Data in Microeconometric Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 655-680.
    2. Ridder, Geert & Moffitt, Robert, 2007. "The Econometrics of Data Combination," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 75, Elsevier.
    3. Judith K. Hellerstein & Guido W. Imbens, 1999. "Imposing Moment Restrictions From Auxiliary Data By Weighting," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 1-14, February.
    4. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    5. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    6. Qi-Hua Wang, 2004. "Likelihood-based imputation inference for mean functionals in the presence of missing responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 403-414, September.
    7. Qihua Wang & Pengjie Dai, 2008. "Semiparametric model-based inference in the presence of missing responses," Biometrika, Biometrika Trust, vol. 95(3), pages 721-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianqing Liu & Xiaohui Yuan, 2020. "Empirical likelihood-based weighted rank regression with missing covariates," Statistical Papers, Springer, vol. 61(2), pages 697-725, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    2. Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
    3. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    4. Devereux, Paul J. & Tripathi, Gautam, 2009. "Optimally combining censored and uncensored datasets," Journal of Econometrics, Elsevier, vol. 151(1), pages 17-32, July.
    5. Michael Rendall & Ryan Admiraal & Alessandra DeRose & Paola DiGiulio & Mark Handcock & Filomena Racioppi, 2008. "Population constraints on pooled surveys in demographic hazard modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(4), pages 519-539, October.
    6. Hirukawa, Masayuki & Prokhorov, Artem, 2018. "Consistent estimation of linear regression models using matched data," Journal of Econometrics, Elsevier, vol. 203(2), pages 344-358.
    7. Yuan, Xiaohui & Liu, Tianqing & Lin, Nan & Zhang, Baoxue, 2010. "Combining conditional and unconditional moment restrictions with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2420-2433, November.
    8. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    9. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian Instrumental Variables Estimation for Nonignorable Missing Instruments," Discussion Paper Series DP2020-06, Research Institute for Economics & Business Administration, Kobe University.
    10. Bayram, Deniz & Dayé, Modeste, 2014. "Asymptotic Properties of the Weighted Least Squares Estimator Under Moments Restriction," MPRA Paper 60465, University Library of Munich, Germany.
    11. Esmeralda A. Ramalho & Joaquim J. S. Ramalho & Rui Evangelista, 2017. "Combining micro and macro data in hedonic price indexes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 317-332, June.
    12. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Elizabeth H. Baker & Zafar Nazarov, 2013. "Multiple Imputation for Combined-survey Estimation With Incomplete Regressors in One but Not Both Surveys," Sociological Methods & Research, , vol. 42(4), pages 483-530, November.
    13. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    14. Michael S. Rendall & Mark S. Handcock & Stefan H. Jonsson, 2007. "Bayesian Estimation of Hispanic Fertility Hazards from Survey and Population Data," Working Papers WR-496, RAND Corporation.
    15. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    16. F Bravo, 2008. "Effcient M-estimators with auxiliary information," Discussion Papers 08/26, Department of Economics, University of York.
    17. Jason Allen & Robert Clark & Jean-François Houde, 2019. "Search Frictions and Market Power in Negotiated-Price Markets," Journal of Political Economy, University of Chicago Press, vol. 127(4), pages 1550-1598.
    18. d'Haultfoeuille, Xavier, 2010. "A new instrumental method for dealing with endogenous selection," Journal of Econometrics, Elsevier, vol. 154(1), pages 1-15, January.
    19. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    20. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:39-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.