IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p787-799.html
   My bibliography  Save this article

Efficient Estimation of the Cox Model with Auxiliary Subgroup Survival Information

Author

Listed:
  • Chiung-Yu Huang
  • Jing Qin
  • Huei-Ting Tsai

Abstract

With the rapidly increasing availability of data in the public domain, combining information from different sources to infer about associations or differences of interest has become an emerging challenge to researchers. This article presents a novel approach to improve efficiency in estimating the survival time distribution by synthesizing information from the individual-level data with t-year survival probabilities from external sources such as disease registries. While disease registries provide accurate and reliable overall survival statistics for the disease population, critical pieces of information that influence both choice of treatment and clinical outcomes usually are not available in the registry database. To combine with the published information, we propose to summarize the external survival information via a system of nonlinear population moments and estimate the survival time model using empirical likelihood methods. The proposed approach is more flexible than the conventional meta-analysis in the sense that it can automatically combine survival information for different subgroups and the information may be derived from different studies. Moreover, an extended estimator that allows for a different baseline risk in the aggregate data is also studied. Empirical likelihood ratio tests are proposed to examine whether the auxiliary survival information is consistent with the individual-level data. Simulation studies show that the proposed estimators yield a substantial gain in efficiency over the conventional partial likelihood approach. Two sets of data analysis are conducted to illustrate the methods and theory.

Suggested Citation

  • Chiung-Yu Huang & Jing Qin & Huei-Ting Tsai, 2016. "Efficient Estimation of the Cox Model with Auxiliary Subgroup Survival Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 787-799, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:787-799
    DOI: 10.1080/01621459.2015.1044090
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1044090
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1044090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie He & Hui Li & Shumei Zhang & Xiaogang Duan, 2019. "Additive hazards model with auxiliary subgroup survival information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 128-149, January.
    2. Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
    3. Bo Han & Ingrid Van Keilegom & Xiaoguang Wang, 2022. "Semiparametric estimation of the nonmixture cure model with auxiliary survival information," Biometrics, The International Biometric Society, vol. 78(2), pages 448-459, June.
    4. Fei Gao & K. C. G. Chan, 2023. "Noniterative adjustment to regression estimators with population‐based auxiliary information for semiparametric models," Biometrics, The International Biometric Society, vol. 79(1), pages 140-150, March.
    5. Ying Sheng & Yifei Sun & Detian Deng & Chiung‐Yu Huang, 2020. "Censored linear regression in the presence or absence of auxiliary survival information," Biometrics, The International Biometric Society, vol. 76(3), pages 734-745, September.
    6. Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.
    7. Ziqi Chen & Jing Ning & Yu Shen & Jing Qin, 2021. "Combining primary cohort data with external aggregate information without assuming comparability," Biometrics, The International Biometric Society, vol. 77(3), pages 1024-1036, September.
    8. Yu‐Jen Cheng & Yen‐Chun Liu & Chang‐Yu Tsai & Chiung‐Yu Huang, 2023. "Semiparametric estimation of the transformation model by leveraging external aggregate data in the presence of population heterogeneity," Biometrics, The International Biometric Society, vol. 79(3), pages 1996-2009, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:787-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.