Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
- Chernozhukov, Victor & Hong, Han, 2003.
"An MCMC approach to classical estimation,"
Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
- Victor Chernozhukov & Han Hong, 2023. "An MCMC Approach to Classical Estimation," Papers 2301.07782, arXiv.org.
- Takahiro Hoshino, 2013. "Semiparametric Bayesian Estimation for Marginal Parametric Potential Outcome Modeling: Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1189-1204, December.
- Lee J. & Berger J.O., 2001. "Semiparametric Bayesian Analysis of Selection Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1397-1409, December.
- D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
- Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
- Guido W. Imbens & Tony Lancaster, 1994.
"Combining Micro and Macro Data in Microeconometric Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 655-680.
- Imbens, G.W. & Lancaster, T., 1991. "Combining Micro and Macro Data in Microeconometric Models," Harvard Institute of Economic Research Working Papers 1578, Harvard - Institute of Economic Research.
- Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
- Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
- Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
- Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
- S. Kundu & D. B. Dunson, 2014. "Latent factor models for density estimation," Biometrika, Biometrika Trust, vol. 101(3), pages 641-654.
- Heckman, James, 2013.
"Sample selection bias as a specification error,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
- Heckman, James J, 1979. "Sample Selection Bias as a Specification Error," Econometrica, Econometric Society, vol. 47(1), pages 153-161, January.
- Bijwaard, Govert E. & Franses, Philip Hans & Paap, Richard, 2006.
"Modeling Purchases as Repeated Events,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 487-502, October.
- Bijwaard, G.E. & Franses, Ph.H.B.F. & Paap, R., 2003. "Modeling purchases as repeated events," Econometric Institute Research Papers EI 2003-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
- Erin Hartman & Richard Grieve & Roland Ramsahai & Jasjeet S. Sekhon, 2015. "From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 757-778, June.
- Nevo, Aviv, 2003.
"Using Weights to Adjust for Sample Selection When Auxiliary Information Is Available,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 43-52, January.
- Aviv Nevo, 2001. "Using Weights to Adjust for Sample Selection When Auxiliary Information is Available," NBER Technical Working Papers 0275, National Bureau of Economic Research, Inc.
- Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
- Igari, Ryosuke & Hoshino, Takahiro, 2018.
"A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing,"
Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
- Ryosuke Igari & Takahiro Hoshino, 2017. "Bayesian Data Combination Approach for Repeated Durations under Unobserved Missing Indicators: Application to Interpurchase-Timing in Marketing," Keio-IES Discussion Paper Series 2017-015, Institute for Economics Studies, Keio University.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Igari, Ryosuke & Hoshino, Takahiro, 2018.
"A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing,"
Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
- Ryosuke Igari & Takahiro Hoshino, 2017. "Bayesian Data Combination Approach for Repeated Durations under Unobserved Missing Indicators: Application to Interpurchase-Timing in Marketing," Keio-IES Discussion Paper Series 2017-015, Institute for Economics Studies, Keio University.
- Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
- Giray Gozgor, 2012. "Inflation Targeting and Monetary Policy Rules: Further Evidence from the Case of Turkey," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 2(5), pages 1-7.
- Jonathan Chassot & Michael Creel, 2023. "Constructing Efficient Simulated Moments Using Temporal Convolutional Networks," Working Papers 1412, Barcelona School of Economics.
- Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
- Christiano, Lawrence J. & Trabandt, Mathias & Walentin, Karl, 2010.
"DSGE Models for Monetary Policy Analysis,"
Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 7, pages 285-367,
Elsevier.
- Lawrence J. Christiano & Mathias Trabandt & Karl Walentin, 2010. "DSGE models for monetary policy analysis," FRB Atlanta CQER Working Paper 2010-02, Federal Reserve Bank of Atlanta.
- Lawrence J. Christiano & Mathias Trabandt & Karl Walentin, 2010. "DSGE Models for Monetary Policy Analysis," NBER Working Papers 16074, National Bureau of Economic Research, Inc.
- Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
- Nevo, Aviv, 2003.
"Using Weights to Adjust for Sample Selection When Auxiliary Information Is Available,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 43-52, January.
- Aviv Nevo, 2001. "Using Weights to Adjust for Sample Selection When Auxiliary Information is Available," NBER Technical Working Papers 0275, National Bureau of Economic Research, Inc.
- Yuan, Xiaohui & Liu, Tianqing & Lin, Nan & Zhang, Baoxue, 2010. "Combining conditional and unconditional moment restrictions with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2420-2433, November.
- Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
- Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012.
"Inverse Probability Tilting for Moment Condition Models with Missing Data,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2008. "Inverse Probability Tilting for Moment Condition Models with Missing Data," NBER Working Papers 13981, National Bureau of Economic Research, Inc.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian Instrumental Variables Estimation for Nonignorable Missing Instruments," Discussion Paper Series DP2020-06, Research Institute for Economics & Business Administration, Kobe University.
- Fernández-Villaverde, J. & Rubio-RamÃrez, J.F. & Schorfheide, F., 2016.
"Solution and Estimation Methods for DSGE Models,"
Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724,
Elsevier.
- Jesus Fernandez-Villaverde & Juan Rubio-RamÃrez & Frank Schorfheide, 2015. "Solution and Estimation Methods for DSGE Models," PIER Working Paper Archive 15-042, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2015.
- Jesús Fernández-Villaverde & Juan F. Rubio Ramírez & Frank Schorfheide, 2016. "Solution and Estimation Methods for DSGE Models," NBER Working Papers 21862, National Bureau of Economic Research, Inc.
- Rubio-RamÃrez, Juan Francisco & Schorfheide, Frank & Fernández-Villaverde, Jesús, 2015. "Solution and Estimation Methods for DSGE Models," CEPR Discussion Papers 11032, C.E.P.R. Discussion Papers.
- Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
- Manuel Arellano & Stéphane Bonhomme, 2017.
"Quantile Selection Models With an Application to Understanding Changes in Wage Inequality,"
Econometrica, Econometric Society, vol. 85, pages 1-28, January.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Quantile selection models: with an application to understanding changes in wage inequality," CeMMAP working papers 75/15, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2016. "Quantile Selection Models with an Application to Understanding Changes in Wage Inequality," Working Papers wp2016_1610, CEMFI.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Quantile selection models: with an application to understanding changes in wage inequality," CeMMAP working papers CWP75/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Brannlund, Runar & Nordstrom, Jonas, 2004.
"Carbon tax simulations using a household demand model,"
European Economic Review, Elsevier, vol. 48(1), pages 211-233, February.
- Brännlund, Runar & Nordström, Jonas, 1999. "Carbon Tax Simulations Using a Household Demand Model," Umeå Economic Studies 508, Umeå University, Department of Economics.
- Steven Berry & James Levinsohn & Ariel Pakes, 2004.
"Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market,"
Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
- Steven Berry & James Levinsohn & Ariel Pakes, 1998. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," NBER Working Papers 6481, National Bureau of Economic Research, Inc.
- Levinsohn, James & Berry, Steven & Pakes, Ariel, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Scholarly Articles 3436404, Harvard University Department of Economics.
- Steven Berry & James Levinsohn & Ariel Pakes, 2001. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Cowles Foundation Discussion Papers 1337, Cowles Foundation for Research in Economics, Yale University.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
Keywords
Latent Variable Modeling; Quasi-Bayes; Population-Level Information; Markov chain Monte Carlo; Data Augmentation;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2017-06-11 (Econometrics)
- NEP-ORE-2017-06-11 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:keo:dpaper:2017-014. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Institute for Economics Studies, Keio University (email available below). General contact details of provider: https://edirc.repec.org/data/iekeijp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.