IDEAS home Printed from https://ideas.repec.org/p/igi/igierp/212.html
   My bibliography  Save this paper

Forecast pooling for short time series of macroeconomic variables

Author

Listed:
  • Massimiliano Marcellino

Abstract

It is rather common to have several competing forecasts for the same variable, and many methods have been suggested to pick up the best, on the basis of their past forecasting performance. As an alternative, the forecasts can be combined to obtain a pooled forecast, and several options are available to select what forecasts should be pooled, and how to determine their relative weights. In this paper we compare the relative performance of alternative pooling methods, using a very large dataset of about 500 macroeconomic variables for the countries in the European Monetary Union. In this case the forecasting exercise is further complicated by the short time span available, due to the need of collecting a homogeneous dataset. For each variable in the dataset, we consider 58 forecasts produced by a range of linear, time-varying and non-linear models, plus 16 pooled forecasts. Our results indicate that on average combination methods work well. Yet, a more disaggregate analysis reveals that single non-linear models can outperform combination forecasts for several series, even though they perform rather badly for other series so that on average their performance is not as good as that of pooled forecasts. Similar results are obtained for a subset of unstable series, the pooled forecasts behave only slightly better, and for three key macroeconomic variables, namely, industrial production, unemployment and inflation.

Suggested Citation

  • Massimiliano Marcellino, "undated". "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  • Handle: RePEc:igi:igierp:212
    as

    Download full text from publisher

    File URL: https://repec.unibocconi.it/igier/igi/wp/2002/212.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-684, November.
    2. Michael Artis & Massimiliano Marcellino, 2001. "Fiscal forecasting: The track record of the IMF, OECD and EC," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 20-36.
    3. Massimiliano Marcellino, "undated". "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    5. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    6. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    7. Stock, James H, 1996. "VAR, Error Correction and Pretest Forecasts at Long Horizons," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 685-701, November.
    8. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    9. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    10. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    11. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    12. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    13. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    14. Meese, Richard & Geweke, John, 1984. "A Comparison of Autoregressive Univariate Forecasting Procedures for Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 191-200, July.
    15. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo A. Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 755-783, December.
    2. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    3. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    4. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    5. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    6. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    7. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    8. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
    9. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    10. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    11. Laura Carabotta & Peter Claeys, 2024. "Combine to compete: Improving fiscal forecast accuracy over time," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 948-982, July.
    12. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
    13. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    14. Roberto S. Mariano & Suleyman Ozmucur, 2021. "Predictive Performance of Mixed-Frequency Nowcasting and Forecasting Models (with Application to Philippine Inflation and GDP Growth)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 383-400, December.
    15. Benjamin Russo, 2010. "Is past prologue? Prospects for state and local sales tax bases," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2261-2274.
    16. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
    17. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    18. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    19. Bhaghoe, Sailesh & Ooft, Gavin, 2021. "Nowcasting Quarterly GDP Growth in Suriname with Factor-MIDAS and Mixed-Frequency VAR Models," Studies in Applied Economics 176, The Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise.
    20. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    21. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    22. Saeed Rasekhi, 2011. "Fundamental Modeling Exchange Rate using Genetic Algorithm: A Case Study of European Countries," Journal of Economics and Behavioral Studies, AMH International, vol. 3(6), pages 352-359.
    23. Antonio Musa, 2022. "Nowcasting Bosnia and Herzegovina GDP in Real Time," IHEID Working Papers 08-2022, Economics Section, The Graduate Institute of International Studies.
    24. Costas Milas & Phil Rothman, 2005. "Multivariate STAR Unemployment Rate Forecasts," Econometrics 0502010, University Library of Munich, Germany.
    25. Mariola Pilatowska, 2009. "The Combined Forecasts Using the Akaike Weights," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 5-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    2. Massimiliano Marcellino, "undated". "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Massimiliano Marcellino, 2004. "Forecast Pooling for European Macroeconomic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 91-112, February.
    4. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    5. Ralf Brüggemann & Helmut Lütkepohl & Massimiliano Marcellino, 2008. "Forecasting euro area variables with German pre-EMU data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 465-481.
    6. repec:hum:wpaper:sfb649dp2006-065 is not listed on IDEAS
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    9. Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
    10. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    11. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    12. Alberto Baffigi & Roberto Golinelli & Giuseppe Parigi, 2002. "Real-time GDP forecasting in the euro area," Temi di discussione (Economic working papers) 456, Bank of Italy, Economic Research and International Relations Area.
    13. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    14. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    15. Aksoy Yunus & Leon-Ledesma Miguel A., 2008. "Non-Linearities and Unit Roots in G7 Macroeconomic Variables," The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-44, February.
    16. Serena Ng & Timothy Vogelsang, 1999. "Forecasting Dynamic Time Series in the Presence of Deterministic Components," Boston College Working Papers in Economics 445, Boston College Department of Economics.
    17. Blerina Vika & Ilir Vika, 2021. "Forecasting Albanian Time Series with Linear and Nonlinear Univariate Models," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 10, September.
    18. Carlo A. Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 755-783, December.
    19. Longhi, Simonetta & Nijkamp, Peter, 2006. "Forecasting regional labor market developments under spatial heterogeneity and spatial correlation," Serie Research Memoranda 0015, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    20. Simonetta Longhi & Peter Nijkamp, 2005. "Forecasting Regional Labour Market Developments Under Spatial Heterogeneity and Spatial Autocorrelation," Tinbergen Institute Discussion Papers 05-041/3, Tinbergen Institute.
    21. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igi:igierp:212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.igier.unibocconi.it/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.