Forecasting Regional Labour Market Developments Under Spatial Heterogeneity and Spatial Autocorrelation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
- Hausman, Jerry, 2015.
"Specification tests in econometrics,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
- Hausman, Jerry A, 1978. "Specification Tests in Econometrics," Econometrica, Econometric Society, vol. 46(6), pages 1251-1271, November.
- J. A. Hausman, 1976. "Specification Tests in Econometrics," Working papers 185, Massachusetts Institute of Technology (MIT), Department of Economics.
- Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
- Partridge, Mark D & Rickman, Dan S, 1998. "Generalizing the Bayesian Vector Autoregression Approach for Regional Interindustry Employment Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 62-72, January.
- Norman R. Swanson & Halbert White, 1997.
"A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks,"
The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
- Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, University Library of Munich, Germany.
- Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
- Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
- Uwe Blien & Alexandros Tassinopoulos, 2001.
"Forecasting Regional Employment with the ENTROP Method,"
Regional Studies, Taylor & Francis Journals, vol. 35(2), pages 113-124.
- Blien, Uwe & Tassinopoulos, Alexandros, 1999. "Forecasting Regional Employment with the ENTROP Method," ERSA conference papers ersa99pa344, European Regional Science Association.
- Badi H. Baltagi & Dong Li, 2004. "Prediction in the Panel Data Model with Spatial Correlation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 13, pages 283-295, Springer.
- Raymond J. G. M. Florax & Thomas Graaff, 2004. "The Performance of Diagnostic Tests for Spatial Dependence in Linear Regression Models: A Meta-Analysis of Simulation Studies," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 2, pages 29-65, Springer.
- Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
- Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
- Diebold, Francis X & Kilian, Lutz, 2000.
"Unit-Root Tests Are Useful for Selecting Forecasting Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
- Francis X. Diebold & Lutz Kilian, 1999. "Unit Root Tests are Useful for Selecting Forecasting Models," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-063, New York University, Leonard N. Stern School of Business-.
- Francis X. Diebold & Lutz Kilian, 1999. "Unit Root Tests Are Useful for Selecting Forecasting Models," NBER Working Papers 6928, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Olivier Jean Blanchard & Lawrence F. Katz, 1992. "Regional Evolutions," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(1), pages 1-76.
- Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
- Anselin, Luc & Tam Cho, Wendy K., 2002. "Spatial Effects and Ecological Inference," Political Analysis, Cambridge University Press, vol. 10(3), pages 276-297, July.
- Dan S. Rickman, 2002. "A Bayesian forecasting approach to constructing regional input-output based employment multipliers," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(4), pages 483-498.
- James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
- Lutz Bellmann & Uwe Blien, 2001. "Wage Curve Analyses of Establishment Data from Western Germany," ILR Review, Cornell University, ILR School, vol. 54(4), pages 851-863, July.
- Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Longhi, Simonetta & Nijkamp, Peter, 2006. "Forecasting regional labor market developments under spatial heterogeneity and spatial correlation," Serie Research Memoranda 0015, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
- Simonetta Longhi & Peter Nijkamp & Aura Reggianni & Erich Maierhofer, 2005. "Neural Network Modeling as a Tool for Forecasting Regional Employment Patterns," International Regional Science Review, , vol. 28(3), pages 330-346, July.
- Schanne, N. & Wapler, R. & Weyh, A., 2010.
"Regional unemployment forecasts with spatial interdependencies,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
- Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007. "Regional employment forecasts with spatial interdependencies," IAB-Discussion Paper 200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB-Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008.
"Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions,"
Environment and Planning B, , vol. 35(4), pages 701-722, August.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2005. "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms," Computational Economics 0511002, University Library of Munich, Germany.
- Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008.
"Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions,"
Environment and Planning B, , vol. 35(4), pages 701-722, August.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2008. "Neural networks and genetic algorithms as forecasting tools: a case study on German regions," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 35(4), pages 701-722, July.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2005. "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms," Computational Economics 0511002, University Library of Munich, Germany.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Massimiliano Marcellino, "undated".
"Forecast pooling for short time series of macroeconomic variables,"
Working Papers
212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano, 2002. "Forecast Pooling for Short Time Series of Macroeconomic Variables," CEPR Discussion Papers 3313, C.E.P.R. Discussion Papers.
- Marcellino, Massimliano, 2004.
"Forecasting EMU macroeconomic variables,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
- Massimiliano Marcellino, "undated". "Forecasting EMU macroeconomic variables," Working Papers 216, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano, 2002. "Forecasting EMU Macroeconomic Variables," CEPR Discussion Papers 3529, C.E.P.R. Discussion Papers.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, January.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, November.
- Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
- Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
- Massimiliano Marcellino, "undated".
"Instability and non-linearity in the EMU,"
Working Papers
211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano, 2002. "Instability and Non-Linearity in the EMU," CEPR Discussion Papers 3312, C.E.P.R. Discussion Papers.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
- Herrera Gómez, Marcos & Cid, Juan Carlos & Paz, Jorge Augusto, 2012. "Introducción a la econometría espacial: Una aplicación al estudio de la fecundidad en la Argentina usando R [Introduction to Spatial Econometrics: An application to the study of fertility in Argent," MPRA Paper 41138, University Library of Munich, Germany.
- Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
- Mahyudin Ahmad & Siong Hook Law, 2024.
"Financial development, institutions, and economic growth nexus: A spatial econometrics analysis using geographical and institutional proximities,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2699-2721, July.
- Ahmad, Mahyudin & Siong Hook, Law, 2022. "Financial development, institutions, and economic growth nexus: A spatial econometrics analysis using geographical and institutional proximities," MPRA Paper 114471, University Library of Munich, Germany.
More about this item
Keywords
Space-Time Data; Regional Forecasts; Spatial Heterogeneity; Spatial Spillovers;All these keywords.
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- R19 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Other
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20050041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.