IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v1y2009i1n4.html
   My bibliography  Save this article

Selecting Instrumental Variables in a Data Rich Environment

Author

Listed:
  • Ng Serena

    (Columbia University)

  • Bai Jushan

    (New York University)

Abstract

Practitioners often have at their disposal a large number of instruments that are weakly exogenous for the parameter of interest. However, not every instrument has the same predictive power for the endogenous variable, and using too many instruments can induce bias. We consider two ways of handling these problems. The first is to form principal components from the observed instruments, and the second is to reduce the number of instruments by subset variable selection. For the latter, we consider boosting, a method that does not require an a priori ordering of the instruments. We also suggest a way to pre-order the instruments and then screen the instruments using the goodness of fit of the first stage regression and information criteria. We find that the principal components are often better instruments than the observed data except when the number of relevant instruments is small. While no single method dominates, a hard-thresholding method based on the t test generally yields estimates with small biases and small root-mean-squared errors.

Suggested Citation

  • Ng Serena & Bai Jushan, 2009. "Selecting Instrumental Variables in a Data Rich Environment," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-34, April.
  • Handle: RePEc:bpj:jtsmet:v:1:y:2009:i:1:n:4
    DOI: 10.2202/1941-1928.1014
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1941-1928.1014
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1941-1928.1014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    2. Hansen, Christian & McDonald, James B. & Newey, Whitney K., 2010. "Instrumental Variables Estimation With Flexible Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 13-25.
    3. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
    4. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    7. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    8. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    9. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    10. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    11. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    12. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    13. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
    14. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
    15. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    16. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    17. Hall, Alastair R. & Inoue, Atsushi & Jana, Kalidas & Shin, Changmock, 2007. "Information in generalized method of moments estimation and entropy-based moment selection," Journal of Econometrics, Elsevier, vol. 138(2), pages 488-512, June.
    18. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tae-Hwy Lee & Tao Wang, 2023. "Estimation and Testing of Forecast Rationality with Many Moments," Papers 2309.09481, arXiv.org.
    2. Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
    3. Ludovica Gambaro & Guido Neidhöfer & C. Katharina Spieß, 2019. "The Effect of Early Childhood Education and Care Services on the Social Integration of Refugee Families," Discussion Papers of DIW Berlin 1828, DIW Berlin, German Institute for Economic Research.
    4. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
    5. Stephane Dees & M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2009. "Identification of New Keynesian Phillips Curves from a Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(7), pages 1481-1502, October.
    6. Bayar, Omer, 2018. "Weak instruments and estimated monetary policy rules," Journal of Macroeconomics, Elsevier, vol. 58(C), pages 308-317.
    7. Geoffrey R. Dunbar & Casey Jones, 2018. "The (Un)Demand for Money in Canada," Staff Working Papers 18-20, Bank of Canada.
    8. Berriel, Tiago & Medeiros, Marcelo C. & Sena, Marcelo J., 2016. "Instrument selection for estimation of a forward-looking Phillips Curve," Economics Letters, Elsevier, vol. 145(C), pages 123-125.
    9. Scheufele, Rolf, 2010. "Evaluating the German (New Keynesian) Phillips curve," The North American Journal of Economics and Finance, Elsevier, vol. 21(2), pages 145-164, August.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    11. Gehrig, Thomas & Iannino, Maria Chiara & Unger, Stephan, 2024. "Social responsibility and bank resiliency," Journal of Financial Stability, Elsevier, vol. 70(C).
    12. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    13. Max-Sebastian Dov`i, 2021. "Inference on the New Keynesian Phillips Curve with Very Many Instrumental Variables," Papers 2101.09543, arXiv.org, revised Mar 2021.
    14. Hao Hao & Bai Huang & Tae-hwy Lee, 2024. "Model averaging estimation of panel data models with many instruments and boosting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 51(1), pages 53-69, January.
    15. Belloni, Alexandre & Hansen, Christian & Newey, Whitney, 2022. "High-dimensional linear models with many endogenous variables," Journal of Econometrics, Elsevier, vol. 228(1), pages 4-26.
    16. Victor Chernozhukov & Iv'an Fern'andez-Val & Chen Huang & Weining Wang, 2024. "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models," Papers 2402.00584, arXiv.org, revised Oct 2024.
    17. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    18. Bhatt, Vipul & Kishor, Kundan & Marfatia, Hardik, 2017. "Estimating excess sensitivity and habit persistence in consumption using Greenbook forecast as an instrument," MPRA Paper 79748, University Library of Munich, Germany.
    19. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2010. "LASSO Methods for Gaussian Instrumental Variables Models," Papers 1012.1297, arXiv.org, revised Feb 2011.
    20. Gambaro, Ludovica & Neidhöfer, Guido & Spiess, C. Katharina, 2021. "The effect of early childhood education and care services on the integration of refugee families," Labour Economics, Elsevier, vol. 72(C).
    21. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    22. Sirisankanan, Aeggarchat, 2023. "The Response of Household Savings to Anticipated Income Changes: Natural Experiments Using Natural and Non-Natural Factors," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 48(2), pages 1-31, June.
    23. Omer Bayar, 2022. "Reducing large datasets to improve the identification of estimated policy rules," Empirical Economics, Springer, vol. 63(1), pages 113-140, July.
    24. Vipul Bhatt & N. Kundan Kishor & Hardik Marfatia, 2020. "Estimating Excess Sensitivity and Habit Persistence in Consumption Using Greenbook Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(2), pages 257-284, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    3. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    4. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    5. Marcellino, Massimiliano & Kapetanios, George & Khalaf, Lynda, 2015. "Factor based identification-robust inference in IV regressions," CEPR Discussion Papers 10390, C.E.P.R. Discussion Papers.
    6. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    7. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    8. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    9. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    10. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
    11. Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
    12. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    13. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    14. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    15. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    16. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    17. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    18. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    19. Okui, Ryo, 2009. "The optimal choice of moments in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 151(1), pages 1-16, July.
    20. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    21. Travaglini, Guido, 2010. "Dynamic Econometric Testing of Climate Change and of its Causes," MPRA Paper 23600, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:1:y:2009:i:1:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.