IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04554050.html
   My bibliography  Save this paper

Inference for extremal regression with dependent heavy-tailed data

Author

Listed:
  • Abdelaati Daouia

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Gilles Claude Stupfler

    (MATHSTIC - SFR UA MathSTIC - UA - Université d'Angers, LAREMA - Laboratoire Angevin de Recherche en Mathématiques - UA - Université d'Angers - CNRS - Centre National de la Recherche Scientifique)

  • Antoine Usseglio-Carleve

    (LMA - EA2151 Laboratoire de Mathématiques d'Avignon - AU - Avignon Université)

Abstract

Nonparametric inference on tail conditional quantiles and their least squares analogs, expectiles, remains limited to i.i.d. data. Expectiles are themselves quan- tiles of a transformation of the underlying distribution. We develop a fully operational kernel-based inferential theory for extreme conditional quantiles and expectiles in the challenging framework of ↵-mixing, conditional heavy-tailed data whose tail index may vary with covariate values. This extreme value problem requires a dedicated treatment to deal with data sparsity in the far tail of the response, in addition to handling diffi culties inher- ent to mixing, smoothing, and sparsity associated to covariate localization. We prove the pointwise asymptotic normality of our estimators and obtain optimal rates of convergence reminiscent of those found in the i.i.d. regression setting, but which had not been estab- lished in the conditional extreme value literature so far. Our mathematical assumptions are satisfied in location-scale models with possible temporal misspecification, nonlinear regression models, and autoregressive models, among others. We propose full bias and variance reduction procedures, and simple but e↵ective data-based rules for selecting tun- ing hyperparameters. Our inference strategy is shown to perform well in finite samples and is showcased in applications to stock returns and tornado loss data.

Suggested Citation

  • Abdelaati Daouia & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2023. "Inference for extremal regression with dependent heavy-tailed data," Post-Print hal-04554050, HAL.
  • Handle: RePEc:hal:journl:hal-04554050
    DOI: 10.1214/23-AOS2320
    Note: View the original document on HAL open archive server: https://hal.science/hal-04554050v4
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04554050v4/document
    Download Restriction: no

    File URL: https://libkey.io/10.1214/23-AOS2320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chaudhuri, Probal, 1991. "Global nonparametric estimation of conditional quantile functions and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 246-269, November.
    2. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    3. Huixia Judy Wang & Deyuan Li & Xuming He, 2012. "Estimation of High Conditional Quantiles for Heavy-Tailed Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1453-1464, December.
    4. Victor Chernozhukov & Iván Fernández-Val, 2011. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(2), pages 559-589.
    5. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    6. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    7. Gomes, M. Ivette & Pestana, Dinis, 2007. "A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 280-292, March.
    8. Stupfler, Gilles, 2016. "Estimating the conditional extreme-value index under random right-censoring," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 1-24.
    9. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    10. Bradley, Richard C., 1981. "Central limit theorems under weak dependence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 1-16, March.
    11. J. Vilar-Fernández & J. Vilar-Fernández, 1998. "Recursive Estimation of Regression Functions by Local Polynomial Fitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 729-754, December.
    12. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    13. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    15. Roussas, George G., 1990. "Nonparametric regression estimation under mixing conditions," Stochastic Processes and their Applications, Elsevier, vol. 36(1), pages 107-116, October.
    16. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    17. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    18. Jonathan El Methni & Laurent Gardes & Stéphane Girard, 2014. "Non-parametric Estimation of Extreme Risk Measures from Conditional Heavy-tailed Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 988-1012, December.
    19. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Anthony C. Davison & Simone A. Padoan & Gilles Stupfler, 2023. "Tail Risk Inference via Expectiles in Heavy-Tailed Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 876-889, July.
    22. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    23. Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
    24. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2018. "Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 919-932, April.
    25. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    26. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    27. Linton, Oliver & Xiao, Zhijie, 2013. "Estimation Of And Inference About The Expected Shortfall For Time Series With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 29(4), pages 771-807, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    2. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    3. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    4. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    5. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    6. Abdelaati Daouia & Simone A. Padoan & Gilles Stupfler, 2024. "Extreme expectile estimation for short-tailed data," Post-Print hal-04672516, HAL.
    7. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    8. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    9. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.
    10. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    11. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    12. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
    13. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    14. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    16. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    17. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    18. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
    19. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    20. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04554050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.