IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01446199.html
   My bibliography  Save this paper

Estimating the conditional extreme-value index under random right-censoring

Author

Listed:
  • Gilles Stupfler

    (School of Mathematical Sciences [Nottingham] - UON - University of Nottingham, UK, GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

In extreme value theory, the extreme-value index is a parameter that controls the behavior of a cumulative distribution function in its right tail. Estimating this parameter is thus the first step when tackling a number of problems related to extreme events. In this paper, we introduce an estimator of the extreme-value index in the presence of a random covariate when the response variable is right-censored, whether its conditional distribution belongs to the Fréchet, Weibull or Gumbel domain of attraction. The pointwise weak consistency and asymptotic normality of the proposed estimator are established. Some illustrations on simulations are provided and we showcase the estimator on a real set of medical data.

Suggested Citation

  • Gilles Stupfler, 2016. "Estimating the conditional extreme-value index under random right-censoring," Post-Print hal-01446199, HAL.
  • Handle: RePEc:hal:journl:hal-01446199
    DOI: 10.1016/j.jmva.2015.10.015
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yuri Goegebeur & Armelle Guillou & Gilles Stupfler, 2015. "Uniform asymptotic properties of a nonparametric regression estimator of conditional tails," Post-Print hal-01457385, HAL.
    2. Laurent Gardes & Gilles Stupfler, 2015. "Estimating extreme quantiles under random truncation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 207-227, June.
    3. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    4. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Laurent Gardes & Gilles Stupfler, 2015. "Estimating extreme quantiles under random truncation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 207-227, June.
    6. Laurent Gardes & Gilles Stupfler, 2015. "Erratum to: Estimating extreme quantiles under random truncation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 228-228, June.
    7. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    8. Wang, Hansheng & Tsai, Chih-Ling, 2009. "Tail Index Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1233-1240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    2. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    3. El Methni, Jonathan & Stupfler, Gilles, 2018. "Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 6(C), pages 129-148.
    4. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    5. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    6. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    7. Escobar-Bach, Mikael & Van Keilegom, Ingrid, 2023. "Nonparametric estimation of conditional cure models for heavy-tailed distributions and under insufficient follow-up," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    8. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).
    9. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2019. "Robust estimation of the Pickands dependence function under random right censoring," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 101-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    2. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    3. Yuri Goegebeur & Armelle Guillou & Théo Rietsch, 2015. "Robust conditional Weibull-type estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 479-514, June.
    4. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    5. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    6. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    7. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    8. Cui, Hengxin & Tan, Ken Seng & Yang, Fan & Zhou, Chen, 2022. "Asymptotic analysis of portfolio diversification," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 302-325.
    9. Worms, J. & Worms, R., 2016. "A Lynden-Bell integral estimator for extremes of randomly truncated data," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 106-117.
    10. Benchaira, Souad & Meraghni, Djamel & Necir, Abdelhakim, 2015. "On the asymptotic normality of the extreme value index for right-truncated data," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 378-384.
    11. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    12. Saida Mancer & Abdelhakim Necir & Souad Benchaira, 2023. "Bias Reduction in Kernel Tail Index Estimation for Randomly Truncated Pareto-Type Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1510-1547, August.
    13. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    14. Benchaira, Souad & Meraghni, Djamel & Necir, Abdelhakim, 2016. "Kernel estimation of the tail index of a right-truncated Pareto-type distribution," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 186-193.
    15. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    16. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    17. Gardes, Laurent & Girard, Stéphane, 2016. "On the estimation of the functional Weibull tail-coefficient," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 29-45.
    18. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    19. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    20. He, Fengyang & Cheng, Yebin & Tong, Tiejun, 2016. "Estimation of extreme conditional quantiles through an extrapolation of intermediate regression quantiles," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 30-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01446199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.