IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i500p1453-1464.html
   My bibliography  Save this article

Estimation of High Conditional Quantiles for Heavy-Tailed Distributions

Author

Listed:
  • Huixia Judy Wang
  • Deyuan Li
  • Xuming He

Abstract

Estimation of conditional quantiles at very high or low tails is of interest in numerous applications. Quantile regression provides a convenient and natural way of quantifying the impact of covariates at different quantiles of a response distribution. However, high tails are often associated with data sparsity, so quantile regression estimation can suffer from high variability at tails especially for heavy-tailed distributions. In this article, we develop new estimation methods for high conditional quantiles by first estimating the intermediate conditional quantiles in a conventional quantile regression framework and then extrapolating these estimates to the high tails based on reasonable assumptions on tail behaviors. We establish the asymptotic properties of the proposed estimators and demonstrate through simulation studies that the proposed methods enjoy higher accuracy than the conventional quantile regression estimates. In a real application involving statistical downscaling of daily precipitation in the Chicago area, the proposed methods provide more stable results quantifying the chance of heavy precipitation in the area. Supplementary materials for this article are available online.

Suggested Citation

  • Huixia Judy Wang & Deyuan Li & Xuming He, 2012. "Estimation of High Conditional Quantiles for Heavy-Tailed Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1453-1464, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1453-1464
    DOI: 10.1080/01621459.2012.716382
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.716382
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.716382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1453-1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.