IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/128141.html
   My bibliography  Save this paper

Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles

Author

Listed:
  • Daouia, Abdelaati
  • Stupfler, Gilles
  • Usseglio-Carleve, Antoine

Abstract

The expectile is a prime candidate for being a standard risk measure in actuarial and financial contexts, for its ability to recover information about probabilities and typical behavior of extreme values, as well as its excellent axiomatic properties. A series of recent papers has focused on expectile estimation at extreme levels, with a view on gathering essential information about low-probability, high-impact events that are of most interest to risk managers. The obtention of accurate confidence intervals for extreme expectiles is paramount in any decision process in which they are involved, but actual inference on these tail risk measures is still a difficult question due to their least squares nature and sensitivity to tail heaviness. This article focuses on asymptotic Gaussian inference about tail expectiles in the challenging context of heavy-tailed observations. We use an in-depth analysis of the proofs of asymptotic normality results for two classes of extreme expectile estimators to derive bias-reduced and variance-corrected Gaussian confidence intervals. These, unlike previous attempts in the literature, are well-rooted in statistical theory and can accommodate underlying distributions that display a wide range of tail behaviors. A large-scale simulation study and three real data analyses confirm the versatility of the proposed technique.

Suggested Citation

  • Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.
  • Handle: RePEc:tse:wpaper:128141
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2023/wp_tse_1444.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    3. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    4. Cornea-Madeira, Adriana & Davidson, Russell, 2015. "A Parametric Bootstrap For Heavy-Tailed Distributions," Econometric Theory, Cambridge University Press, vol. 31(3), pages 449-470, June.
    5. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    6. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    7. T. Maillart & D. Sornette, 2010. "Heavy-tailed distribution of cyber-risks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 75(3), pages 357-364, June.
    8. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    9. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
    12. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    13. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    14. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    2. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Abdelaati Daouia & Simone A. Padoan & Gilles Stupfler, 2024. "Extreme expectile estimation for short-tailed data," Post-Print hal-04672516, HAL.
    4. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    5. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    6. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    7. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    8. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    9. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    10. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    11. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    12. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    13. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    14. Bignozzi, Valeria & Merlo, Luca & Petrella, Lea, 2024. "Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 44-50.
    15. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    16. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    17. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    18. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    19. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    20. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.

    More about this item

    Keywords

    Asymptotic normality; Bias correction; Expectiles; Extreme values; Inference; Variance correction;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:128141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.