IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/40-11.html
   My bibliography  Save this paper

Inference for extremal conditional quantile models, with an application to market and birthweight risks

Author

Listed:
  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Ivan Fernandez-Val

    (Institute for Fiscal Studies and Boston University)

Abstract

Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants' birthweights in the range between 250 and 1500 grams.

Suggested Citation

  • Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Inference for extremal conditional quantile models, with an application to market and birthweight risks," CeMMAP working papers CWP40/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:40/11
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp4011.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ricardo J. Caballero & Eduardo M. R. A. Engel, 1999. "Explaining Investment Dynamics in U.S. Manufacturing: A Generalized (S,s) Approach," Econometrica, Econometric Society, vol. 67(4), pages 783-826, July.
    2. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. Donald, Stephen G. & Paarsch, Harry J., 2002. "Superconsistent estimation and inference in structural econometric models using extreme order statistics," Journal of Econometrics, Elsevier, vol. 109(2), pages 305-340, August.
    5. Timmer, C P, 1971. "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 776-794, July-Aug..
    6. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    7. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    8. Feigin, Paul D. & Resnick, Sidney I., 1994. "Limit distributions for linear programming time series estimators," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 135-165, June.
    9. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 1999. "Testing, Comparing, and Combining Value at Risk Measures," Center for Financial Institutions Working Papers 99-44, Wharton School Center for Financial Institutions, University of Pennsylvania.
    10. Sen, Amartya, 1973. "On Economic Inequality," OUP Catalogue, Oxford University Press, number 9780198281931.
    11. Patrice Bertail & Christian Haefke & Dimitris N. Politis & Halbert White, 2001. "A subsampling approach to estimating the distribution of diversing statistics with application to assessing financial market risks," Economics Working Papers 599, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    13. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    14. Victor Chernozhukov & Han Hong, 2004. "Likelihood Estimation and Inference in a Class of Nonregular Econometric Models," Econometrica, Econometric Society, vol. 72(5), pages 1445-1480, September.
    15. Flinn, C. & Heckman, J., 1982. "New methods for analyzing structural models of labor force dynamics," Journal of Econometrics, Elsevier, vol. 18(1), pages 115-168, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    2. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    3. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    4. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    5. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    6. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    7. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    8. Marrocu, Emanuela & Paci, Raffaele & Zara, Andrea, 2015. "Micro-economic determinants of tourist expenditure: A quantile regression approach," Tourism Management, Elsevier, vol. 50(C), pages 13-30.
    9. Shah, Attaullah & Shah, Hamid Ali & Smith, Jason M. & Labianca, Giuseppe (Joe), 2017. "Judicial efficiency and capital structure: An international study," Journal of Corporate Finance, Elsevier, vol. 44(C), pages 255-274.
    10. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    12. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    13. Mensi, Walid & Hammoudeh, Shawkat & Reboredo, Juan Carlos & Nguyen, Duc Khuong, 2014. "Do global factors impact BRICS stock markets? A quantile regression approach," Emerging Markets Review, Elsevier, vol. 19(C), pages 1-17.
    14. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    15. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    16. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    17. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    18. repec:hum:wpaper:sfb649dp2016-057 is not listed on IDEAS
    19. Khalifa, Maha & Othman, Hakim Ben & Hussainey, Khaled, 2018. "The effect of ex ante and ex post conservatism on the cost of equity capital: A quantile regression approach for MENA countries," Research in International Business and Finance, Elsevier, vol. 44(C), pages 239-255.
    20. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    21. Li, Tong, 2010. "Indirect inference in structural econometric models," Journal of Econometrics, Elsevier, vol. 157(1), pages 120-128, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:40/11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.