IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2023i3p876-889.html
   My bibliography  Save this article

Tail Risk Inference via Expectiles in Heavy-Tailed Time Series

Author

Listed:
  • Anthony C. Davison
  • Simone A. Padoan
  • Gilles Stupfler

Abstract

Expectiles define the only law-invariant, coherent and elicitable risk measure apart from the expectation. The popularity of expectile-based risk measures is steadily growing and their properties have been studied for independent data, but further results are needed to establish that extreme expectiles can be applied with the kind of dependent time series models relevant to finance. In this article we provide a basis for inference on extreme expectiles and expectile-based marginal expected shortfall in a general β-mixing context that encompasses ARMA and GARCH models with heavy-tailed innovations. Our methods allow the estimation of marginal (pertaining to the stationary distribution) and dynamic (conditional on the past) extreme expectile-based risk measures. Simulations and applications to financial returns show that the new estimators and confidence intervals greatly improve on existing ones when the data are dependent.

Suggested Citation

  • Anthony C. Davison & Simone A. Padoan & Gilles Stupfler, 2023. "Tail Risk Inference via Expectiles in Heavy-Tailed Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 876-889, July.
  • Handle: RePEc:taf:jnlbes:v:41:y:2023:i:3:p:876-889
    DOI: 10.1080/07350015.2022.2078332
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2022.2078332
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2022.2078332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    2. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    3. Fatimah A. Almulhim & Mohammed B. Alamari & Mustapha Rachdi & Ali Laksaci, 2024. "Recursive Estimation of the Expectile-Based Shortfall in Functional Ergodic Time Series," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    4. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2023:i:3:p:876-889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.