IDEAS home Printed from https://ideas.repec.org/p/hal/ciredw/halshs-04685420.html
   My bibliography  Save this paper

Impacts of repetitive droughts and the key role of experience : evidence from Nigeria

Author

Listed:
  • Mélanie Gittard

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

Abstract

Western African Sahel faced severe droughts in the 1980s, affecting agricultural production and food security. In recent decades, farmers have faced uncertainty in the timing and amount of rainy seasons and are confronted with erratic rainfall with high interannual variations. Can the experience of past dry events reduce the vulnerability of households to short-term rainfall shocks? In this paper, I match three waves of panel household surveys focusing on agriculture in Nigeria (GHS, from 2010-2016) and high temporal resolution precipitation data set from the Climate Hazard Center (CHIRPS). I show evidence of the extreme importance of the long-dry period of the 1980s and identify more recent droughts in 2013/2015, which are in line with a change in the characteristics of the rainfall trends. Through a two-way-fixed effect strategy, I exploit the spatial variation of the exposition to the 2015 drought. First, I look at the short-term effects of being hit by a drought on agricultural production and food security indicators. I show that being hit by a drought decreases yields by 14%, and decreases the food diversity of households by around 1%. Second, I look at the impacts' heterogeneity according to the plot's experience, using the timing of the year of acquisition of the plot. I compare short-term droughts' effects on households that acquired their first plot before the 1980s dry period to those that acquired it after. Results suggest that acquiring the land before 1985 attenuates the harmful effects of a climate shock, as these particular households have only a 3% reduction in their yields due to the 2015 drought. This is especially the case when households were severely hit in the 1980s. This result might suggest that having a long-lasting experience under extreme dry events on cultivated land reduces vulnerability to rainfall variability.

Suggested Citation

  • Mélanie Gittard, 2024. "Impacts of repetitive droughts and the key role of experience : evidence from Nigeria," CIRED Working Papers halshs-04685420, HAL.
  • Handle: RePEc:hal:ciredw:halshs-04685420
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-04685420v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-04685420v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michela Biasutti, 2019. "Rainfall trends in the African Sahel: Characteristics, processes, and causes," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(4), July.
    2. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2008. "Crop switching as a strategy for adapting to climate change," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-22, March.
    3. Shawn Cole & Xavier Gine & Jeremy Tobacman & Petia Topalova & Robert Townsend & James Vickery, 2013. "Barriers to Household Risk Management: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 5(1), pages 104-135, January.
    4. Fleischer, Aliza & Lichtman, Ivgenia & Mendelsohn, Robert, 2008. "Climate change, irrigation, and Israeli agriculture: Will warming be harmful?," Ecological Economics, Elsevier, vol. 65(3), pages 508-515, April.
    5. Fadare, Olusegun Ayodeji & Akerele, Dare & Toritseju, Begho, 2014. "Factors Influencing Adoption Decisions Of Maize Farmers In Nigeria," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 2(3), pages 1-10, July.
    6. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    7. Stefanija Veljanoska, 2018. "Can Land Fragmentation Reduce the Exposure of Rural Households to Weather Variability?," Post-Print hal-04626999, HAL.
    8. Robert Mendelsohn & Ariel Dinar, 2003. "Climate, Water, and Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 328-341.
    9. Olivia Bertelli, 2019. "Food security measures in Sub-Saharan Africa. A validation of the LSMS-ISA scale," Post-Print hal-02455184, HAL.
    10. John M. Antle & Claudio O. Stöckle, 2017. "Climate Impacts on Agriculture: Insights from Agronomic-Economic Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 299-318.
    11. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    12. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    13. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    14. Deressa, T. & Hassan, Rashid M. & Poonyth, Daneswar, 2005. "Measuring the impact of climate change on South African agriculture: The case of sugar-cane growing regions," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 44(4), pages 1-19, December.
    15. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    16. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    17. Calogero Carletto & Sydney Gourlay & Paul Winters, 2015. "Editor's choice From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis," Journal of African Economies, Centre for the Study of African Economies, vol. 24(5), pages 593-628.
    18. S. Seo & Robert Mendelsohn & Ariel Dinar & Rashid Hassan & Pradeep Kurukulasuriya, 2009. "A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 313-332, July.
    19. Jo Thori Lind, 2019. "Spurious weather effects," Journal of Regional Science, Wiley Blackwell, vol. 59(2), pages 322-354, March.
    20. Wing, Ian Sue & De Cian, Enrica & Mistry, Malcolm N., 2021. "Global vulnerability of crop yields to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    21. Abhijit Banerjee & Esther Duflo & Rachel Glennerster & Cynthia Kinnan, 2015. "The Miracle of Microfinance? Evidence from a Randomized Evaluation," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 22-53, January.
    22. Veljanoska, Stefanija, 2018. "Can Land Fragmentation Reduce the Exposure of Rural Households to Weather Variability?," Ecological Economics, Elsevier, vol. 154(C), pages 42-51.
    23. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    24. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    25. Mendelsohn, Robert & Seo, Sungno Niggol, 2007. "Climate change impacts on animal husbandry in Africa : a Ricardian analysis," Policy Research Working Paper Series 4261, The World Bank.
    26. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    27. Wichern, Jannike & Descheemaeker, Katrien & Giller, Ken E. & Ebanyat, Peter & Taulya, Godfrey & van Wijk, Mark T., 2019. "Vulnerability and adaptation options to climate change for rural livelihoods – A country-wide analysis for Uganda," Agricultural Systems, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    2. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    3. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    4. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    5. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    6. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    7. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    8. Farzana Hossain & Reshad N. Ahsan, 2022. "When it Rains, it Pours: Estimating the Spatial Spillover Effect of Rainfall," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 327-354, June.
    9. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    10. Chiara Falco & Franco Donzelli & Alessandro Olper, 2018. "Climate Change, Agriculture and Migration: A Survey," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    11. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    12. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    13. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    14. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    15. Meierrieks, Daniel & Stadelmann, David, 2024. "Is temperature adversely related to economic development? Evidence on the short-run and the long-run links from sub-national data," Energy Economics, Elsevier, vol. 136(C).
    16. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    17. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    18. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    19. Kaixing Huang & Nicholas Sim, 2021. "Adaptation May Reduce Climate Damage in Agriculture by Two Thirds," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 47-71, February.
    20. Antonio Bento & Noah S. Miller & Mehreen Mookerjee & Edson R. Severnini, 2020. "A Unifying Approach to Measuring Climate Change Impacts and Adaptation," NBER Working Papers 27247, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Nigeria; Droughts; Climate Change; Agricultural Production; Adaptation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:ciredw:halshs-04685420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.