IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v10y2019i4ne591.html
   My bibliography  Save this article

Rainfall trends in the African Sahel: Characteristics, processes, and causes

Author

Listed:
  • Michela Biasutti

Abstract

Sahel rainfall is dynamically linked to the global Hadley cell and to the regional monsoon circulation. It is therefore susceptible to forcings from remote oceans and regional land alike. Warming of the oceans enhances the stability of the tropical atmosphere and weakens deep ascent in the Hadley circulation. Warming of the Sahara and of the nearby oceans changes the structure and position of the regional shallow circulation and allows more of the intense convective systems that determine seasonal rain accumulation. These processes can explain the observed interannual to multidecadal variability. Sea surface temperature anomalies were the dominant forcing of the drought of the 1970s and 1980s. In most recent decades, seasonal rainfall amounts have partially recovered, but rainy season characteristics have changed: rainfall is more intense and intermittent and wetting is concentrated in the late rainy season and away from the west coast. Similar subseasonal and subregional differences in rainfall trends characterize the simulated response to increased greenhouse gases, suggesting an anthropogenic influence. While uncertainty in future projections remains, confidence in them is encouraged by the recognition that seasonal mean rainfall depends on large‐scale drivers of atmospheric circulations that are well resolved by current climate models. Nevertheless, observational and modeling efforts are needed to provide more refined projections of rainfall changes, expanding beyond total accumulation to metrics of intraseasonal characteristics and risk of extreme events, and coordination between climate scientists and stakeholders is needed to generate relevant information that is useful even under deep uncertainty. This article is categorized under: Paleoclimates and Current Trends > Modern Climate Change

Suggested Citation

  • Michela Biasutti, 2019. "Rainfall trends in the African Sahel: Characteristics, processes, and causes," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(4), July.
  • Handle: RePEc:wly:wirecc:v:10:y:2019:i:4:n:e591
    DOI: 10.1002/wcc.591
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.591
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Antoine Leblois, 2021. "Mitigating the impact of bad rainy seasons in poor agricultural regions to tackle deforestation," Post-Print hal-03111007, HAL.
    3. Edward Armstrong & Miikka Tallavaara & Peter O. Hopcroft & Paul J. Valdes, 2023. "North African humid periods over the past 800,000 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    5. Holli Capps Herron & Peter Waylen & Kwadwo Owusu, 2023. "Spatial and temporal variability in the characteristics of extreme daily rainfalls in Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 655-680, May.
    6. Mélanie Gittard, 2024. "Impacts of repetitive droughts and the key role of experience : evidence from Nigeria," CIRED Working Papers halshs-04685420, HAL.
    7. Ponnambalam Rameshwaran & Victoria A. Bell & Helen N. Davies & Alison L. Kay, 2021. "How might climate change affect river flows across West Africa?," Climatic Change, Springer, vol. 169(3), pages 1-27, December.
    8. Ran Feng & Tripti Bhattacharya & Bette L. Otto-Bliesner & Esther C. Brady & Alan M. Haywood & Julia C. Tindall & Stephen J. Hunter & Ayako Abe-Ouchi & Wing-Le Chan & Masa Kageyama & Camille Contoux & , 2022. "Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Derbetini A. Vondou & Guy Merlin Guenang & Tchotchou Lucie Angennes Djiotang & Pierre Honore Kamsu-Tamo, 2021. "Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
    10. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:10:y:2019:i:4:n:e591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.