IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/4135.html
   My bibliography  Save this paper

Climate change, irrigation, and Israeli agriculture : will warming be harmful ?

Author

Listed:
  • Fleischer, Aliza
  • Lichtman, Ivgenia
  • Mendelsohn, Robert

Abstract

The authors use a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. They find that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts that climate change is strictly beneficial. But with water included, the model predicts that only modest climate changes are beneficial, while drastic climate change in the long run will be harmful. Using the Atmospheric Oceanic Global Circulation Models scenarios, the authors show that farm net revenue is expected to increase by 16 percent in 2020, while in 2100 farm net revenue is expected to drop by 60-390 percent varying between the different scenarios. Although Israel has a relatively warm climate, a mild increase in temperature is beneficial due to the ability to supply international markets with farm products early in the season. The findings lead to the conclusion that securing water rights to the farmers and international trade agreements can be important policy measures to help farmers adapt to climate change.

Suggested Citation

  • Fleischer, Aliza & Lichtman, Ivgenia & Mendelsohn, Robert, 2007. "Climate change, irrigation, and Israeli agriculture : will warming be harmful ?," Policy Research Working Paper Series 4135, The World Bank.
  • Handle: RePEc:wbk:wbrwps:4135
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2007/02/06/000016406_20070206105540/Rendered/PDF/wps4135.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pradeep Kurukulasuriya & Robert Mendelsohn & Rashid Hassan & James Benhin & Temesgen Deressa & Mbaye Diop & Helmy Mohamed Eid & K. Yerfi Fosu & Glwadys Gbetibouo & Suman Jain & Ali Mahamadou & Renneth, 2006. "Will African Agriculture Survive Climate Change?," The World Bank Economic Review, World Bank, vol. 20(3), pages 367-388.
    2. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    3. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt65s781bh, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    5. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    6. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    7. Joel B. Smith & Robert Mendelsohn (ed.), 2006. "The Impact of Climate Change on Regional Systems," Books, Edward Elgar Publishing, number 4129.
    8. Robert Mendelsohn & Ariel Dinar, 2003. "Climate, Water, and Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 328-341.
    9. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    10. Robert Mendelsohn & Larry Williams, 2004. "Comparing Forecasts of the Global Impacts of Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 315-333, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seo, Niggol & Mendelsohn, Robert & Dinar, Ariel & Kurukulasuriya, Pradeep & Hassan, Rashid, 2008. "Long-term adaptation : selecting farm types across agro-ecological zones in Africa," Policy Research Working Paper Series 4602, The World Bank.
    2. Jonathan Kaminski & Iddo Kan & Aliza Fleischer, 2013. "A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 70-93.
    3. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Determinants of Agricultural Output: Degree Days, Yields and Implications for Climate Change," 2005 Annual meeting, July 24-27, Providence, RI 19222, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    5. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    6. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    7. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205128, Agricultural and Applied Economics Association.
    8. Garcia, Maria & Viladrich-Grau, Montserrat, 2009. "The economic relevance of climate variables in agriculture: The case of Spain," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(02), pages 1-32.
    9. Deschenes, Olivier & Greenstone, Michael, 2004. "The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather," University of California at Santa Barbara, Economics Working Paper Series qt6w7242cj, Department of Economics, UC Santa Barbara.
    10. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    11. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    12. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    13. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    14. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    15. Fleischer, Aliza & Sternberg, Marcelo, 2006. "The economic impact of global climate change on Mediterranean rangeland ecosystems: A Space-for-Time approach," Ecological Economics, Elsevier, vol. 59(3), pages 287-295, September.
    16. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    17. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    18. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    19. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    20. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.

    More about this item

    Keywords

    Climate Change; Water Supply and Sanitation Governance and Institutions; Water Supply and Systems; Water and Industry; Common Property Resource Development;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:4135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.