IDEAS home Printed from https://ideas.repec.org/p/fer/wpaper/126.html
   My bibliography  Save this paper

The Relevance of Wholesale Electricity Market Places: The Nordic Case

Author

Listed:
  • Spodniak, Petr
  • Ollikka, Kimmo
  • Honkapuro, Samuli

Abstract

Electricity wholesale markets are undergoing rapid transformation due to the increasing share of distributed and variable renewable energy sources (vRES) penetrating the market. The increasing shares of stochastic wind generation bring along greater deviations between the real time power generation and the day-ahead forecasts of power supply. It is therefore reasonable to assume that trading activity is shifting more from the traditionally dominant day-ahead market into the intra-day and regulating power markets. This is because predicting vRES power generation closer to the actual delivery is more reliable and because power generators are motivated to avoid high imbalance costs. We study price spreads between day-ahead, intra-day and regulating power markets in three Nordic countries (Denmark, Sweden and Finland) during 2013-2017. We estimate vector autoregressive (VAR) models to study the interrelationships between the price spreads and the effects of wind forecast and demand forecast errors, and other exogenous variables, such as transmission congestions and hydrological conditions, on price spreads in different Nord Pool bidding areas. We use the variation in the shares of wind power between bidding areas to analyse the impacts of increased shares of wind power on different market places. We find that wind forecast errors do affect price spreads in areas with large shares of wind power generation. Moreover, demand forecast errors have an impact on almost all price spreads, except in areas with relatively low consumption. Our results indicate that increasing shares of wind power are, indeed, changing the relevance of different market places. Markets closer to real time are playing more important role than in the past.

Suggested Citation

  • Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2019. "The Relevance of Wholesale Electricity Market Places: The Nordic Case," Working Papers 126, VATT Institute for Economic Research.
  • Handle: RePEc:fer:wpaper:126
    as

    Download full text from publisher

    File URL: https://www.doria.fi/handle/10024/172539
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    2. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa, 2016. "Impacts of intermittent renewable generation on electricity system costs," Energy Policy, Elsevier, vol. 94(C), pages 411-420.
    3. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    6. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    7. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    8. Eduardo Faria & Stein-Erik Fleten, 2011. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account," Computational Management Science, Springer, vol. 8(1), pages 75-101, April.
    9. Hesamzadeh, Mohammad Reza & Holmberg, Pär & Sarfati, Mahir, 2018. "Simulation and Evaluation of Zonal Electricity Market Designs," Working Paper Series 1211, Research Institute of Industrial Economics.
    10. Furió, Dolores & Lucia, Julio J., 2009. "Congestion management rules and trading strategies in the Spanish electricity market," Energy Economics, Elsevier, vol. 31(1), pages 48-60, January.
    11. Angelica Gianfreda & Lucia Parisio & Matteo Pelagatti, 2016. "The Impact of RES in the Italian Day-Ahead and Balancing Markets," The Energy Journal, , vol. 37(2_suppl), pages 161-184, June.
    12. Arthur Henriot, 2012. "Market design with wind: managing low-predictability in intraday markets," RSCAS Working Papers 2012/63, European University Institute.
    13. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    14. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    15. Gil, Hugo A. & Gomez-Quiles, Catalina & Riquelme, Jesus, 2012. "Large-scale wind power integration and wholesale electricity trading benefits: Estimation via an ex post approach," Energy Policy, Elsevier, vol. 41(C), pages 849-859.
    16. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    17. Knaut, Andreas & Obermüller, Frank, 2016. "How to Sell Renewable Electricity - Interactions of the Intraday and Day-ahead Market under Uncertainty," EWI Working Papers 2016-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    19. Chaves-Ávila, J.P. & Fernandes, C., 2015. "The Spanish intraday market design: A successful solution to balance renewable generation?," Renewable Energy, Elsevier, vol. 74(C), pages 422-432.
    20. Johannes Mauritzen, 2015. "Now or Later? Trading Wind Power Closer to Real Time And How Poorly Designed Subsidies Lead to Higher Balancing Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    21. Vilim, Michael & Botterud, Audun, 2014. "Wind power bidding in electricity markets with high wind penetration," Applied Energy, Elsevier, vol. 118(C), pages 141-155.
    22. Boomsma, Trine Krogh & Juul, Nina & Fleten, Stein-Erik, 2014. "Bidding in sequential electricity markets: The Nordic case," European Journal of Operational Research, Elsevier, vol. 238(3), pages 797-809.
    23. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    24. Lion Hirth, 2018. "What caused the drop in European electricity prices? A factor decomposition analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    25. Kristiansen, Tarjei, 2007. "The Nordic approach to market-based provision of ancillary services," Energy Policy, Elsevier, vol. 35(7), pages 3681-3700, July.
    26. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    27. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Contract durations in the electricity market: Causal impact of 15min trading on the EPEX SPOT market," Energy Economics, Elsevier, vol. 69(C), pages 367-378.
    28. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2021. "The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case," Applied Energy, Elsevier, vol. 283(C).
    2. Spodniak, Petr & Bertsch, Valentin, 2020. "Is flexible and dispatchable generation capacity rewarded in electricity futures markets? A multinational impact analysis," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2021. "The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case," Applied Energy, Elsevier, vol. 283(C).
    2. Koch, Christopher & Hirth, Lion, 2019. "Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Hu, Xiao & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effects of wind power on electricity markets: A case study of the Swedish intraday market," Energy Economics, Elsevier, vol. 96(C).
    4. Ocker, Fabian & Jaenisch, Vincent, 2020. "The way towards European electricity intraday auctions – Status quo and future developments," Energy Policy, Elsevier, vol. 145(C).
    5. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    6. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    7. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    8. Christopher Koch & Philipp Maskos, 2020. "Passive Balancing Through Intraday Trading: Whether Interactions Between Short-term Trading and Balancing Stabilize Germany s Electricity System," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 101-112.
    9. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    10. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    11. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    12. Rainer Baule & Michael Naumann, 2021. "Volatility and Dispersion of Hourly Electricity Contracts on the German Continuous Intraday Market," Energies, MDPI, vol. 14(22), pages 1-24, November.
    13. Christian Pape, 2017. "The impact of intraday markets on the market value of flexibility–Decomposing effects on profile and the imbalance costs," EWL Working Papers 1711, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Dec 2017.
    14. Hohl, Cody & Lo Prete, Chiara & Radhakrishnan, Ashish & Webster, Mort, 2023. "Intraday markets, wind integration and uplift payments in a regional U.S. power system," Energy Policy, Elsevier, vol. 175(C).
    15. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    16. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2020. "Strategic offering of a flexible producer in day-ahead and intraday power markets," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1136-1153.
    17. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    18. Knaut, Andreas & Paschmann, Martin, 2017. "Decoding Restricted Participation in Sequential Electricity Markets," EWI Working Papers 2017-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 31 Aug 2017.
    19. Thomas Kuppelwieser & David Wozabal, 2023. "Intraday power trading: toward an arms race in weather forecasting?," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 57-83, March.
    20. Angelica, Gianfreda & Lucia, Parisio & Matteo, Pelagatti, 2017. "The RES-induced Switching Effect Across Fossil Fuels: An Analysis of the Italian Day-Ahead and Balancing Prices and Their Connected Costs," Working Papers 360, University of Milano-Bicocca, Department of Economics, revised 03 Feb 2017.

    More about this item

    Keywords

    Electricity market; Nordic; Wind forecast; Demand forecast; Environment; energy and climate policy; D47; L94; Q41; Energia; ilmasto ja ympäristö;
    All these keywords.

    JEL classification:

    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fer:wpaper:126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anita Niskanen (email available below). General contact details of provider: https://edirc.repec.org/data/vatttfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.