IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v75y2018icp150-162.html
   My bibliography  Save this article

The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany

Author

Listed:
  • Gürtler, Marc
  • Paulsen, Thomas

Abstract

This study analyzes the effects of wind and solar power generation forecasts on electricity prices. Converse to the existing empirical literature in this area, we apply a panel data analysis to control for endogeneity due to unobserved heterogeneity. We use a dataset with 24 daily observations of day-ahead and intraday prices from 2010 to 2016, and we apply a fixed effects regression under consideration of robust Driscoll-Kraay standard errors. A noteworthy element of the regression model is the simulation-based design of a variable indicating the power generation technology that is price-determining at a certain point in time. In this context, we differentiate between the fuel types coal, gas, and others, to model the nonlinear price behavior for a varying demand. For 2016, we find price dampening effects of both wind and solar power of approximately 0.6 €/MWh per additional GWh of feed-in. Along with the rapidly increasing shares of wind and solar power of the total power generation during the last years, their price dampening effect has declined since 2013, due to a drop in fuel prices. Another finding is that a reduction in forecasting errors on the power generation from wind and solar, and smoothing of the cyclical demand would lead to a decreased price volatility.

Suggested Citation

  • Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
  • Handle: RePEc:eee:eneeco:v:75:y:2018:i:c:p:150-162
    DOI: 10.1016/j.eneco.2018.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318302512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Hagemann & Christoph Weber, 2013. "An Empirical Analysis of Liquidity and its Determinants in The German Intraday Market for Electricity," EWL Working Papers 1317, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2013.
    2. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    3. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Nicolosi, S., 2010. "Wind power integration, negative prices and power system flexibility - An empirical analysis of extreme events in Germany," MPRA Paper 31834, University Library of Munich, Germany.
    6. Cumby, Robert E & Huizinga, John, 1992. "Testing the Autocorrelation Structure of Disturbances in Ordinary Least Squares and Instrumental Variables Regressions," Econometrica, Econometric Society, vol. 60(1), pages 185-195, January.
    7. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    8. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    9. Forrest, Sam & MacGill, Iain, 2013. "Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 120-132.
    10. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    11. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    12. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    13. Bode, Sven & Groscurth, Helmuth-Michael, 2006. "Zur Wirkung des EEG auf den "Strompreis"," HWWA Discussion Papers 348, Hamburg Institute of International Economics (HWWA).
    14. Gelabert, Liliana & Labandeira, Xavier & Linares, Pedro, 2011. "An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity prices," Energy Economics, Elsevier, vol. 33(S1), pages 59-65.
    15. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    16. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    17. Paschen, Marius, 2016. "Dynamic analysis of the German day-ahead electricity spot market," Energy Economics, Elsevier, vol. 59(C), pages 118-128.
    18. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. Tanaka, Makoto, 2006. "Real-time pricing with ramping costs: A new approach to managing a steep change in electricity demand," Energy Policy, Elsevier, vol. 34(18), pages 3634-3643, December.
    21. François Benhmad & Jacques Percebois, 2016. "Wind power feed-in impact on electricity prices in Germany 2009-2013," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(1), pages 81-96, June.
    22. Gil, Hugo A. & Gomez-Quiles, Catalina & Riquelme, Jesus, 2012. "Large-scale wind power integration and wholesale electricity trading benefits: Estimation via an ex post approach," Energy Policy, Elsevier, vol. 41(C), pages 849-859.
    23. Werner, Dan, 2014. "Electricity Market Price Volatility: The Importance of Ramping Costs," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169619, Agricultural and Applied Economics Association.
    24. Troy, Niamh & Denny, Eleanor & O'Malley, Mark, 2010. "Base-load cycling on a system with significant wind penetration," MPRA Paper 34848, University Library of Munich, Germany.
    25. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    26. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    27. Mulder, Machiel & Scholtens, Bert, 2013. "The impact of renewable energy on electricity prices in the Netherlands," Renewable Energy, Elsevier, vol. 57(C), pages 94-100.
    28. Rathmann, M., 2007. "Do support systems for RES-E reduce EU-ETS-driven electricity prices?," Energy Policy, Elsevier, vol. 35(1), pages 342-349, January.
    29. O'Mahoney, Amy & Denny, Eleanor, 2011. "The Merit Order Effect of Wind Generation on the Irish Electricity Market," MPRA Paper 56043, University Library of Munich, Germany.
    30. Tveten, Åsa Grytli & Bolkesjø, Torjus Folsland & Martinsen, Thomas & Hvarnes, Håvard, 2013. "Solar feed-in tariffs and the merit order effect: A study of the German electricity market," Energy Policy, Elsevier, vol. 61(C), pages 761-770.
    31. Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
    32. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    33. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    34. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    35. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    36. Christoph Weber & Oliver Woll, 2007. "Merit-Order-Effekte Von Erneuerbaren Energien - Zu Schoen Um Wahr Zu Sein?," EWL Working Papers 0701, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Sep 2007.
    37. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    38. Thure Traber & Claudia Kemfert, 2009. "Impacts of the German Support for Renewable Energy on Electricity Prices, Emissions, and Firms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 155-178.
    39. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    40. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    41. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    42. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    2. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da, 2019. "The “Merit-order effect” of wind and solar power: Volatility and determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 54-62.
    3. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Nibedita, Barsha & Irfan, Mohd, 2022. "Analyzing the asymmetric impacts of renewables on wholesale electricity price: Empirical evidence from the Indian electricity market," Renewable Energy, Elsevier, vol. 194(C), pages 538-551.
    6. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    7. Janda, Karel, 2018. "Slovak electricity market and the price merit order effect of photovoltaics," Energy Policy, Elsevier, vol. 122(C), pages 551-562.
    8. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    9. Rinne, Sonja, 2024. "Estimating the merit-order effect using coarsened exact matching: Reconciling theory with the empirical results to improve policy implications," Energy Policy, Elsevier, vol. 185(C).
    10. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    11. Stelios Loumakis & Eugenia Giannini & Zacharias Maroulis, 2019. "Merit Order Effect Modeling: The Case of the Hellenic Electricity Market," Energies, MDPI, vol. 12(20), pages 1-20, October.
    12. Daron Acemoglu, Ali Kakhbod, and Asuman Ozdaglar, 2017. "Competition in Electricity Markets with Renewable Energy Sources," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    13. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    14. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    15. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    16. Pradhan, Ashis Kumar & Rout, Sandhyarani & Khan, Imran Ahmed, 2021. "Does market concentration affect wholesale electricity prices? An analysis of the Indian electricity sector in the COVID-19 pandemic context," Utilities Policy, Elsevier, vol. 73(C).
    17. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    18. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Sánchez de la Nieta, A.A. & Contreras, J., 2020. "Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case," Energy Economics, Elsevier, vol. 90(C).
    20. Shao, Jing & Chen, Huanhuan & Li, Jinke & Liu, Guy, 2022. "An evaluation of the consumer-funded renewable obligation scheme in the UK for wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    More about this item

    Keywords

    Merit-order effect; Renewable energy sources; Wind; Solar; Ramping costs; Forecasting errors;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:75:y:2018:i:c:p:150-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.