IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v283y2021ics030626192031494x.html
   My bibliography  Save this article

The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case

Author

Listed:
  • Spodniak, Petr
  • Ollikka, Kimmo
  • Honkapuro, Samuli

Abstract

Electricity wholesale markets are undergoing rapid transformation due to the increasing shares of variable renewable energy sources. We therefore asked whether trading activity is shifting from the traditionally dominant day-ahead market into the markets closer to real time. We studied the relevance of different electricity markets indirectly by analysing the price spreads between day-ahead, intraday and regulating power markets. We estimated vector autoregressive models for Denmark, Sweden and Finland for the period from 2015 to 2017 and studied the interrelationships between the price spreads and the effects of wind forecast and demand forecast errors, and other exogenous variables. We found that wind forecast errors do affect price spreads in areas with large shares of wind power generation. Demand forecast errors have an impact on almost all price spreads, except in areas with relatively low consumption. Interestingly, while the impact of demand forecasts was relatively stable over the studied years, the effects of wind forecasts became more important each year. As a conclusion, markets closer to real time are becoming more important due to the increasing shares of wind power, and their role as reference prices relevant for price risk hedging, capacity markets, and other decision making will probably increase in the future.

Suggested Citation

  • Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2021. "The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case," Applied Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:appene:v:283:y:2021:i:c:s030626192031494x
    DOI: 10.1016/j.apenergy.2020.116063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031494X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa, 2016. "Impacts of intermittent renewable generation on electricity system costs," Energy Policy, Elsevier, vol. 94(C), pages 411-420.
    2. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    3. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    4. Thomas P. Tangerås & Johannes Mauritzen, 2018. "Real‐time versus day‐ahead market power in a hydro‐based electricity market," Journal of Industrial Economics, Wiley Blackwell, vol. 66(4), pages 904-941, December.
    5. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    8. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2019. "The Relevance of Wholesale Electricity Market Places: The Nordic Case," Working Papers 126, VATT Institute for Economic Research.
    9. Koichiro Ito & Mar Reguant, 2016. "Sequential Markets, Market Power, and Arbitrage," American Economic Review, American Economic Association, vol. 106(7), pages 1921-1957, July.
    10. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    11. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    12. Vilim, Michael & Botterud, Audun, 2014. "Wind power bidding in electricity markets with high wind penetration," Applied Energy, Elsevier, vol. 118(C), pages 141-155.
    13. Bowei Guo & David Newbery & Giorgio Castagneto Gissey, 2019. "The Impact of a Carbon Tax on Cross-Border Electricity Trading (replaced with WP2005)," Working Papers EPRG1918, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Boomsma, Trine Krogh & Juul, Nina & Fleten, Stein-Erik, 2014. "Bidding in sequential electricity markets: The Nordic case," European Journal of Operational Research, Elsevier, vol. 238(3), pages 797-809.
    15. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    16. Knaut, Andreas & Obermüller, Frank, 2016. "How to Sell Renewable Electricity - Interactions of the Intraday and Day-ahead Market under Uncertainty," EWI Working Papers 2016-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    17. Eduardo Faria & Stein-Erik Fleten, 2011. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account," Computational Management Science, Springer, vol. 8(1), pages 75-101, April.
    18. Lion Hirth, 2018. "What caused the drop in European electricity prices? A factor decomposition analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Hesamzadeh, M. & Holmberg, P. & Sarfati, M., 2018. "Simulation and Evaluation of Zonal Electricity Market Designs," Cambridge Working Papers in Economics 1829, Faculty of Economics, University of Cambridge.
    20. Furió, Dolores & Lucia, Julio J., 2009. "Congestion management rules and trading strategies in the Spanish electricity market," Energy Economics, Elsevier, vol. 31(1), pages 48-60, January.
    21. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurilovich, Aleksandr A. & Trovò, Andrea & Pugach, Mikhail & Stevenson, Keith J. & Guarnieri, Massimo, 2022. "Prospect of modeling industrial scale flow batteries – From experimental data to accurate overpotential identification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    3. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
    4. Thomas Kuppelwieser & David Wozabal, 2023. "Intraday power trading: toward an arms race in weather forecasting?," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 57-83, March.
    5. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    6. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    7. Hohl, Cody & Lo Prete, Chiara & Radhakrishnan, Ashish & Webster, Mort, 2023. "Intraday markets, wind integration and uplift payments in a regional U.S. power system," Energy Policy, Elsevier, vol. 175(C).
    8. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    9. Avesani, Diego & Zanfei, Ariele & Di Marco, Nicola & Galletti, Andrea & Ravazzolo, Francesco & Righetti, Maurizio & Majone, Bruno, 2022. "Short-term hydropower optimization driven by innovative time-adapting econometric model," Applied Energy, Elsevier, vol. 310(C).
    10. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    11. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    12. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
    13. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    14. Zhang, Bidan & He, Guannan & Du, Yang & Wen, Haoran & Huan, Xintao & Xing, Bowen & Huang, Jingsi, 2024. "Assessment of the economic impact of forecasting errors in Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 374(C).
    15. Cramer, Eike & Witthaut, Dirk & Mitsos, Alexander & Dahmen, Manuel, 2023. "Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 346(C).
    16. Cao, Yujie & Cao, Fang & Wang, Yajing & Wang, Jianxiao & Wu, Lei & Ding, Zhaohao, 2024. "Managing data center cluster as non-wire alternative: A case in balancing market," Applied Energy, Elsevier, vol. 360(C).
    17. Adela Bâra & Simona-Vasilica Oprea & Bogdan George Tudorică, 2024. "From the East-European Regional Day-Ahead Markets to a Global Electricity Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2525-2557, June.
    18. Klyve, Øyvind Sommer & Klæboe, Gro & Nygård, Magnus Moe & Marstein, Erik Stensrud, 2023. "Limiting imbalance settlement costs from variable renewable energy sources in the Nordics: Internal balancing vs. balancing market participation," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2019. "The Relevance of Wholesale Electricity Market Places: The Nordic Case," Working Papers 126, VATT Institute for Economic Research.
    2. Hu, Xiao & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effects of wind power on electricity markets: A case study of the Swedish intraday market," Energy Economics, Elsevier, vol. 96(C).
    3. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2020. "Strategic offering of a flexible producer in day-ahead and intraday power markets," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1136-1153.
    4. Koch, Christopher & Hirth, Lion, 2019. "Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    6. Christopher Koch & Philipp Maskos, 2020. "Passive Balancing Through Intraday Trading: Whether Interactions Between Short-term Trading and Balancing Stabilize Germany s Electricity System," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 101-112.
    7. Ioannis Boukas & Damien Ernst & Thibaut Th'eate & Adrien Bolland & Alexandre Huynen & Martin Buchwald & Christelle Wynants & Bertrand Corn'elusse, 2020. "A Deep Reinforcement Learning Framework for Continuous Intraday Market Bidding," Papers 2004.05940, arXiv.org.
    8. Hohl, Cody & Lo Prete, Chiara & Radhakrishnan, Ashish & Webster, Mort, 2023. "Intraday markets, wind integration and uplift payments in a regional U.S. power system," Energy Policy, Elsevier, vol. 175(C).
    9. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    10. Rainer Baule & Michael Naumann, 2022. "Flexible Short-Term Electricity Certificates—An Analysis of Trading Strategies on the Continuous Intraday Market," Energies, MDPI, vol. 15(17), pages 1-28, August.
    11. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    12. Knaut, Andreas & Paschmann, Martin, 2017. "Decoding Restricted Participation in Sequential Electricity Markets," EWI Working Papers 2017-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 31 Aug 2017.
    13. Thomas Kuppelwieser & David Wozabal, 2023. "Intraday power trading: toward an arms race in weather forecasting?," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 57-83, March.
    14. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    15. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    16. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    17. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    18. Meus, Jelle & De Vits, Sarah & S'heeren, Nele & Delarue, Erik & Proost, Stef, 2021. "Renewable electricity support in perfect markets: Economic incentives under diverse subsidy instruments," Energy Economics, Elsevier, vol. 94(C).
    19. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    20. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.

    More about this item

    Keywords

    Electricity market; Nordic; Wind forecast; Demand forecast;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s030626192031494x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.