A note on Ising network analysis with missing data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- M. Marsman & K. Huth & L. J. Waldorp & I. Ntzoufras, 2022. "Objective Bayesian Edge Screening and Structure Selection for Ising Networks," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 47-82, March.
- Edward Ip, 2002. "Locally dependent latent trait model and the dutch identity revisited," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 367-386, September.
- Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
- Paul Holland, 1990. "The Dutch Identity: A new tool for the study of item response models," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 5-18, March.
- Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
- Maarten Marsman & Mijke Rhemtulla, 2022. "Guest Editors’ Introduction to The Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 1-11, March.
- Clara Simon de Blas & Daniel Gomez Gonzalez & Regino Criado Herrero, 2021. "Network analysis: An indispensable tool for curricula design. A real case-study of the degree on mathematics at the URJC in Spain," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-21, March.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
- Krista J. Gile & Mark S. Handcock, 2017. "Analysis of networks with missing data with application to the National Longitudinal Study of Adolescent Health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 501-519, April.
- Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.
- Jingchen Liu & Andrew Gelman & Jennifer Hill & Yu-Sung Su & Jonathan Kropko, 2014. "On the stationary distribution of iterative imputations," Biometrika, Biometrika Trust, vol. 101(1), pages 155-173.
- Carolyn Anderson & Hsiu-Ting Yu, 2007. "Log-Multiplicative Association Models as Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 5-23, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Siliang Zhang & Yunxiao Chen, 2024. "A Note on Ising Network Analysis with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 89(4), pages 1186-1202, December.
- M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
- Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
- Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
- Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
- Svend Kreiner & Karl Christensen, 2011. "Item Screening in Graphical Loglinear Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 228-256, April.
- repec:jss:jstsof:20:i06 is not listed on IDEAS
- Carolyn Anderson, 2013. "Multidimensional Item Response Theory Models with Collateral Information as Poisson Regression Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 276-303, July.
- Jinsong Chen, 2020. "A Partially Confirmatory Approach to the Multidimensional Item Response Theory with the Bayesian Lasso," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 738-774, September.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Niko Hauzenberger & Florian Huber, 2020.
"Model instability in predictive exchange rate regressions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Papers 1811.08818, arXiv.org, revised Dec 2018.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Paper Series 276, WU Vienna University of Economics and Business.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Papers wuwp276, Vienna University of Economics and Business, Department of Economics.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Working Papers in Economics 2018-8, University of Salzburg.
- Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
- Byrd, Michael & Nghiem, Linh H. & McGee, Monnie, 2021. "Bayesian regularization of Gaussian graphical models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
- Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
- Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
- Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
- Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
- Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
More about this item
Keywords
Ising model; iterative imputation; full conditional specification; network psychometrics; mental health disorders; major depressive disorder; generalized anxiety disorder;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-08-26 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:123984. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.