IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v156y2021ics0167947320301766.html
   My bibliography  Save this article

Bayesian regularization of Gaussian graphical models with measurement error

Author

Listed:
  • Byrd, Michael
  • Nghiem, Linh H.
  • McGee, Monnie

Abstract

A framework for determining and estimating the conditional pairwise relationships of variables in high dimensional settings when the observed samples are contaminated with measurement error is proposed. The framework is motivated by the task of establishing gene regulatory networks from microarray studies, in which measurements are taken for a large number of genes from a small sample size, but often measured imperfectly. When no measurement error is present, this problem is often solved by estimating the precision matrix under sparsity constraints. However, when measurement error is present, not correcting for it leads to inconsistent estimates of the precision matrix and poor identification of relationships. To this end, a recent iterative imputation technique developed in the context of missing data is utilized to correct for the biases in the estimates imposed from the contamination. This technique is showcased with a recent variant of the spike-and-slab Lasso to obtain a point estimate of the precision matrix. Simulation studies show that the new method outperforms the naïve method that ignores measurement error in both identification and estimation accuracy. The new method is applied to establish a conditional gene network from a microarray dataset.

Suggested Citation

  • Byrd, Michael & Nghiem, Linh H. & McGee, Monnie, 2021. "Bayesian regularization of Gaussian graphical models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:csdana:v:156:y:2021:i:c:s0167947320301766
    DOI: 10.1016/j.csda.2020.107085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301766
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faming Liang & Bochao Jia & Jingnan Xue & Qizhai Li & Ye Luo, 2018. "An imputation–regularized optimization algorithm for high dimensional missing data problems and beyond," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 899-926, November.
    2. Veronika Ročková & Edward I. George, 2018. "The Spike-and-Slab LASSO," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 431-444, January.
    3. Kean Ming Tan & Yang Ning & Daniela M. Witten & Han Liu, 2016. "Replicates in high dimensions, with applications to latent variable graphical models," Biometrika, Biometrika Trust, vol. 103(4), pages 761-777.
    4. Kshitij Khare & Sang-Yun Oh & Bala Rajaratnam, 2015. "A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 803-825, September.
    5. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    6. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Franks, Alexander & Oh, Sang-Yun, 2023. "Learning Gaussian graphical models with latent confounders," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Xingqi Du & Subhashis Ghosal, 2018. "Bayesian Discriminant Analysis Using a High Dimensional Predictor," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 112-145, December.
    3. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    5. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    6. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    7. He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
    8. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    9. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    10. Zamar, Rubén, 2015. "Ranking Edges and Model Selection in High-Dimensional Graphs," DES - Working Papers. Statistics and Econometrics. WS ws1511, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Avagyan, Vahe, 2016. "D-Trace precision matrix estimator with eigenvalue control," DES - Working Papers. Statistics and Econometrics. WS 23410, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    13. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
    14. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    15. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    16. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.
    17. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    18. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    19. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:156:y:2021:i:c:s0167947320301766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.