IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v85y2020i3d10.1007_s11336-020-09724-3.html
   My bibliography  Save this article

A Partially Confirmatory Approach to the Multidimensional Item Response Theory with the Bayesian Lasso

Author

Listed:
  • Jinsong Chen

    (The University of Hong Kong)

Abstract

For test development in the setting of multidimensional item response theory, the exploratory and confirmatory approaches lie on two ends of a continuum in terms of the loading and residual structures. Inspired by the recent development of the Bayesian Lasso (least absolute shrinkage and selection operator), this research proposes a partially confirmatory approach to estimate both structures using Bayesian regression and a covariance Lasso within a unified framework. The Bayesian hierarchical formulation is implemented using Markov chain Monte Carlo estimation, and the shrinkage parameters are estimated simultaneously. The proposed approach with different model variants and constraints was found to be flexible in addressing loading selection and local dependence. Both simulated and real-life data were analyzed to evaluate the performance of the proposed model across different situations.

Suggested Citation

  • Jinsong Chen, 2020. "A Partially Confirmatory Approach to the Multidimensional Item Response Theory with the Bayesian Lasso," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 738-774, September.
  • Handle: RePEc:spr:psycho:v:85:y:2020:i:3:d:10.1007_s11336-020-09724-3
    DOI: 10.1007/s11336-020-09724-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-020-09724-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-020-09724-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianan Sun & Yunxiao Chen & Jingchen Liu & Zhiliang Ying & Tao Xin, 2016. "Latent Variable Selection for Multidimensional Item Response Theory Models via $$L_{1}$$ L 1 Regularization," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 921-939, December.
    2. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    3. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    4. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
    5. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    6. R. Jennrich & P. Sampson, 1966. "Rotation for simple loadings," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 313-323, September.
    7. Sacha Epskamp & Mijke Rhemtulla & Denny Borsboom, 2017. "Generalized Network Psychometrics: Combining Network and Latent Variable Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 904-927, December.
    8. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
    9. Chen, Yunxiao & Li, Xiaoou & Zhang, Siliang, 2019. "Structured latent factor analysis for large-scale data: identifiability, estimability, and their implications," LSE Research Online Documents on Economics 101122, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
    2. Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
    3. Yoav Bergner & Peter Halpin & Jill-Jênn Vie, 2022. "Multidimensional Item Response Theory in the Style of Collaborative Filtering," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 266-288, March.
    4. Nussbaum, Frank & Giesen, Joachim, 2020. "Pairwise sparse + low-rank models for variables of mixed type," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    5. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    6. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    7. Taha Alshaybawee & Habshah Midi & Rahim Alhamzawi, 2017. "Bayesian elastic net single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 853-871, April.
    8. Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
    9. Sakae Oya, 2022. "A Bayesian Graphical Approach for Large-Scale Portfolio Management with Fewer Historical Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(3), pages 507-526, September.
    10. Kevin H. Lee & Qian Chen & Wayne S. DeSarbo & Lingzhou Xue, 2022. "Estimating Finite Mixtures of Ordinal Graphical Models," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 83-106, March.
    11. Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
    12. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
    13. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    14. Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
    15. Yunxiao Chen, 2020. "A Continuous-Time Dynamic Choice Measurement Model for Problem-Solving Process Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1052-1075, December.
    16. Zhang, Siliang & Chen, Yunxiao, 2024. "A note on Ising network analysis with missing data," LSE Research Online Documents on Economics 123984, London School of Economics and Political Science, LSE Library.
    17. Zhenghao Zeng & Yuqi Gu & Gongjun Xu, 2023. "A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 580-612, June.
    18. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    19. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    20. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:85:y:2020:i:3:d:10.1007_s11336-020-09724-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.