IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i3d10.1007_s11336-021-09826-6.html
   My bibliography  Save this article

Noncompensatory MIRT For Passage-Based Tests

Author

Listed:
  • Nana Kim

    (University of Wisconsin-Madison)

  • Daniel M. Bolt

    (University of Wisconsin-Madison)

  • James Wollack

    (University of Wisconsin-Madison)

Abstract

We consider a multidimensional noncompensatory approach for binary items in passage-based tests. The passage-based noncompensatory model (PB-NM) emphasizes two underlying components in solving passage-based test items: a passage-related component and a passage-independent component. An advantage of the PB-NM model over commonly applied compensatory models (e.g., bifactor model) is that the two components are parameterized in relation to difficulty as opposed to discrimination parameters. As a result, while simultaneously accounting for passage-related local item dependence, the model permits the assessment of how items based on the same passage may require varying levels of passage comprehension (as well as varying levels of passage-independent proficiency) to obtain a correct response. Through a simulation study, we evaluate the comparative fit of the PB-NM against the bifactor model and also illustrate the relationship between the difficulty parameters of the PB-NM and the discrimination parameters of the bifactor model. We further apply the PB-NM to an actual reading comprehension test to demonstrate the relevance of the model in understanding variation in the relative difficulty of the two components across different item types.

Suggested Citation

  • Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09826-6
    DOI: 10.1007/s11336-021-09826-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09826-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09826-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan Whitely, 1980. "Multicomponent latent trait models for ability tests," Psychometrika, Springer;The Psychometric Society, vol. 45(4), pages 479-494, December.
    2. Karl Holzinger & Frances Swineford, 1937. "The Bi-factor method," Psychometrika, Springer;The Psychometric Society, vol. 2(1), pages 41-54, March.
    3. Edward Ip, 2002. "Locally dependent latent trait model and the dutch identity revisited," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 367-386, September.
    4. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    5. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    6. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    7. Susan Embretson (Whitely), 1984. "A general latent trait model for response processes," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 175-186, June.
    8. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    9. Edward Ip, 2000. "Adjusting for information inflation due to local dependency in moderately large item clusters," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 73-91, March.
    10. Eric Maris, 1995. "Psychometric latent response models," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 523-547, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    2. Victoria T. Tanaka & George Engelhard & Matthew P. Rabbitt, 2020. "Using a Bifactor Model to Measure Food Insecurity in Households with Children," Journal of Family and Economic Issues, Springer, vol. 41(3), pages 492-504, September.
    3. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    4. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
    5. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    6. Johan Braeken & Francis Tuerlinckx & Paul Boeck, 2007. "Copula Functions for Residual Dependency," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 393-411, September.
    7. Hiroshi Tamano & Daichi Mochihashi, 2023. "Dynamical Non-compensatory Multidimensional IRT Model Using Variational Approximation," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 487-526, June.
    8. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.
    9. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
    10. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    11. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    12. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    13. Sora Lee & Daniel M. Bolt, 2018. "Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 453-475, June.
    14. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    15. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    16. Vanderleia Martins Lohn & Rafael Tezza & Graziela Dias Alperstedt & Lucila M. S. Campos, 2017. "Future Professionals: A Study of Sustainable Behavior," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    17. Yingbin Zhang & Zhaoxi Yang & Yehui Wang, 2022. "The Impact of Extreme Response Style on the Mean Comparison of Two Independent Samples," SAGE Open, , vol. 12(2), pages 21582440221, June.
    18. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.
    19. Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
    20. Joachim Büschken & Thomas Otter & Greg M. Allenby, 2013. "The Dimensionality of Customer Satisfaction Survey Responses and Implications for Driver Analysis," Marketing Science, INFORMS, vol. 32(4), pages 533-553, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09826-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.