IDEAS home Printed from https://ideas.repec.org/a/ucp/jlabec/doi10.1086-692539.html
   My bibliography  Save this article

Measurement Error in Income and Schooling and the Bias of Linear Estimators

Author

Listed:
  • Paul Bingley
  • Alessandro Martinello

Abstract

We propose a general framework for determining the extent of measurement error bias in ordinary least squares and instrumental variable (IV) estimators of linear models while allowing for measurement error in the validation source. We apply this method by validating Survey of Health, Ageing and Retirement in Europe data with Danish administrative registers. Contrary to most validation studies, we find that measurement error in income is classical once we account for imperfect validation data. We find nonclassical measurement error in schooling, causing a 38% amplification bias in IV estimators of the returns, with important implications for the program evaluation literature.

Suggested Citation

  • Paul Bingley & Alessandro Martinello, 2017. "Measurement Error in Income and Schooling and the Bias of Linear Estimators," Journal of Labor Economics, University of Chicago Press, vol. 35(4), pages 1117-1148.
  • Handle: RePEc:ucp:jlabec:doi:10.1086/692539
    DOI: 10.1086/692539
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1086/692539
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: http://dx.doi.org/10.1086/692539
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: https://libkey.io/10.1086/692539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:jlabec:doi:10.1086/692539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: https://www.journals.uchicago.edu/JOLE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.