IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.03015.html
   My bibliography  Save this paper

Characterizing Measurement Error in the German Socio-Economic Panel Using Linked Survey and Administrative Data

Author

Listed:
  • Nico Thurow

Abstract

This paper exploits the linkage of German administrative social security data (GER: Integrierte Erwerbsbiografien) and survey data from the socio-economic panel (GER: Sozio-\"okonomisches Panel, SOEP) for the characterization of measurement error in metrics quantifying individual-specific labor earnings in Germany. We find that survey participants' decision whether to consent to linkage is non-random based on observables. In that sense, the studied sample does not constitute a random sample of SOEP. Measurement error is not classical: we observe underreporting of income on average, autocorrelation, and non-zero correlation with the true signal and other observable characteristics. In levels, calculated reliability ratios above 0.94 hint at a relaitvely small attenuation bias in simple linear univariate regressions with earnings as the explanatory variable. For changes in income, i.e. first differences, the bias from measurement error is exacerbated.

Suggested Citation

  • Nico Thurow, 2025. "Characterizing Measurement Error in the German Socio-Economic Panel Using Linked Survey and Administrative Data," Papers 2501.03015, arXiv.org.
  • Handle: RePEc:arx:papers:2501.03015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.03015
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    2. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    3. Jenkins, Stephen P. & Rios-Avila, Fernando, 2020. "Modelling errors in survey and administrative data on employment earnings: Sensitivity to the fraction assumed to have error-free earnings," Economics Letters, Elsevier, vol. 192(C).
    4. repec:iab:iabfme:200502(en is not listed on IDEAS
    5. John M. Abowd & Martha H. Stinson, 2013. "Estimating Measurement Error in Annual Job Earnings: A Comparison of Survey and Administrative Data," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1451-1467, December.
    6. Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
    7. repec:iab:iabfme:202305(de is not listed on IDEAS
    8. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    9. Dean R. Hyslop & Wilbur Townsend, 2020. "Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 457-469, April.
    10. repec:taf:jnlbes:v:30:y:2012:i:2:p:191-201 is not listed on IDEAS
    11. Schmillen, Achim & Umkehrer, Matthias & Wachter, Till von, 2024. "Measurement error in longitudinal earnings data: evidence from Germany," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 58, pages 1-8.
    12. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    13. Wolfgang Dauth & Johann Eppelsheimer, 2020. "Preparing the sample of integrated labour market biographies (SIAB) for scientific analysis: a guide," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 54(1), pages 1-14, December.
    14. David Richter & Jürgen Schupp, 2015. "The SOEP Innovation Sample (SOEP IS)," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 135(3), pages 389-400.
    15. Peter Valet & Jule Adriaans & Stefan Liebig, 2019. "Comparing survey data and administrative records on gross earnings: nonreporting, misreporting, interviewer presence and earnings inequality," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 471-491, January.
    16. Bound, John & Brown, Charles & Duncan, Greg J & Rodgers, Willard L, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-368, July.
    17. Pischke, Jorn-Steffen, 1995. "Measurement Error and Earnings Dynamics: Some Estimates from the PSID Validation Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 305-314, July.
    18. repec:iab:iabfda:202303(en is not listed on IDEAS
    19. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 343-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Caliendo & Katrin Huber & Ingo E. Isphording & Jakob Wegmann, 2024. "On the Extent, Correlates, and Consequences of Reporting Bias in Survey Wages," Papers 2411.04751, arXiv.org.
    2. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    3. Stella Martin, 2025. "We Might Both Be Wrong - Reconciliation of Survey and Administrative Earnings Measurements," CQE Working Papers 11025, Center for Quantitative Economics (CQE), University of Muenster.
    4. Paulus, Alari, 2015. "Tax evasion and measurement error: An econometric analysis of survey data linked with tax records," ISER Working Paper Series 2015-10, Institute for Social and Economic Research.
    5. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    6. Stephen P. Jenkins & Fernando Rios-Avila, 2023. "Finite mixture models for linked survey and administrative data: Estimation and postestimation," Stata Journal, StataCorp LP, vol. 23(1), pages 53-85, March.
    7. Dean R. Hyslop & Wilbur Townsend, 2020. "Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 457-469, April.
    8. Hyslop, Dean R. & Townsend, Wilbur, 2017. "Employment misclassification in survey and administrative reports," Economics Letters, Elsevier, vol. 155(C), pages 19-23.
    9. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    10. ChangHwan Kim & Christopher R. Tamborini, 2014. "Response Error in Earnings," Sociological Methods & Research, , vol. 43(1), pages 39-72, February.
    11. Crossley, Thomas F. & Fisher, Paul & Hussein, Omar, 2023. "Assessing data from summary questions about earnings and income," Labour Economics, Elsevier, vol. 81(C).
    12. Chris Ball & Judd Ormsby, 2017. "Comparing the Household Economic Survey to administrative records: An analysis of income and benefit receipt," Treasury Analytical Papers Series ap17/01, New Zealand Treasury.
    13. Christian Imboden & John Voorheis & Caroline Weber, 2023. "Self-Employment Income Reporting on Surveys," Working Papers 23-19, Center for Economic Studies, U.S. Census Bureau.
    14. Peter Gottschalk & Minh Huynh, 2010. "Are Earnings Inequality and Mobility Overstated? The Impact of Nonclassical Measurement Error," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 302-315, May.
    15. Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
    16. Quinn Moore & Irma Perez-Johnson & Robert Santillano, 2018. "Decomposing Differences in Impacts on Survey- and Administrative-Measured Earnings From a Job Training Voucher Experiment," Evaluation Review, , vol. 42(5-6), pages 515-549, October.
    17. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    18. Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
    19. García-Suaza, A & Lobo, J & Montoya, S & Ordóñez, J & Oviedo, J. D, 2022. "Impact of the collection mode on labor income data. A study in the times of COVID19," Documentos de Trabajo 20396, Universidad del Rosario.
    20. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," NBER Working Papers 21676, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.03015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.