IDEAS home Printed from https://ideas.repec.org/p/ese/iserwp/2022-04.html
   My bibliography  Save this paper

Income source confusion using the SILC

Author

Listed:
  • R. Bollinger, Christopher
  • Valentinova Tasseva, Iva

Abstract

We use a unique panel of household survey data – the Austrian version of the European Union Statistics on Income and Living Conditions (SILC) for 2008-2011 – which have been linked to individual administrative records on both state unemployment benefits and earnings. We assess the extent and structure of misreporting across similar benefits and between benefits and earnings. We document that many respondents fail to report participation in one or more of the unemployment programmes. Moreover, they inflate earnings for periods when they are unemployed but receiving unemployment compensation. To demonstrate the impact of income source confusion on estimators we estimate standard Mincer wage equations. Since unemployment is associated with lower education, the reports of unemployment benefits as earnings bias downward the returns to education. Failure to report unemployment benefits also leads to substantial sample bias when selecting on these benefits, as one might in estimating the returns to job training.

Suggested Citation

  • R. Bollinger, Christopher & Valentinova Tasseva, Iva, 2022. "Income source confusion using the SILC," ISER Working Paper Series 2022-04, Institute for Social and Economic Research.
  • Handle: RePEc:ese:iserwp:2022-04
    as

    Download full text from publisher

    File URL: https://www.iser.essex.ac.uk/wp-content/uploads/files/working-papers/iser/2022-04.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen P. Jenkins & Fernando Rios‐Avila, 2021. "Measurement error in earnings data: Replication of Meijer, Rohwedder, and Wansbeek's mixture model approach to combining survey and register data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(4), pages 474-483, June.
    2. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    3. Bruce D. Meyer & Nikolas Mittag, 2019. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness, and Holes in the Safety Net," American Economic Journal: Applied Economics, American Economic Association, vol. 11(2), pages 176-204, April.
    4. Mathiowetz, Nancy A & Duncan, Greg J, 1988. "Out of Work, Out of Mind: Response Errors in Retrospective Reports of Unemployment," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(2), pages 221-229, April.
    5. Celhay, Pablo & Meyer, Bruce D. & Mittag, Nikolas, 2021. "Errors in Reporting and Imputation of Government Benefits and Their Implications," IZA Discussion Papers 14396, Institute of Labor Economics (IZA).
    6. Peter Lynn & Annette Jäckle & Stephen P. Jenkins & Emanuela Sala, 2012. "The impact of questioning method on measurement error in panel survey measures of benefit receipt: evidence from a validation study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 289-308, January.
    7. Paulus, Alari, 2015. "Tax evasion and measurement error: An econometric analysis of survey data linked with tax records," ISER Working Paper Series 2015-10, Institute for Social and Economic Research.
    8. Stefan Angel & Richard Heuberger & Nadja Lamei, 2018. "Differences Between Household Income from Surveys and Registers and How These Affect the Poverty Headcount: Evidence from the Austrian SILC," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(2), pages 575-603, July.
    9. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    10. Stefan Angel & Franziska Disslbacher & Stefan Humer & Matthias Schnetzer, 2019. "What did you really earn last year?: explaining measurement error in survey income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1411-1437, October.
    11. Christopher R. Bollinger & Barry T. Hirsch & Charles M. Hokayem & James P. Ziliak, 2019. "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2143-2185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Caliendo & Katrin Huber & Ingo E. Isphording & Jakob Wegmann, 2024. "On the Extent, Correlates, and Consequences of Reporting Bias in Survey Wages," Papers 2411.04751, arXiv.org.
    2. Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023. "Accuracy of self‐reported private health insurance coverage," Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    2. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    3. Marco Caliendo & Katrin Huber & Ingo E. Isphording & Jakob Wegmann, 2024. "On the Extent, Correlates, and Consequences of Reporting Bias in Survey Wages," Papers 2411.04751, arXiv.org.
    4. Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
    5. Stephen P. Jenkins & Fernando Rios-Avila, 2023. "Finite mixture models for linked survey and administrative data: Estimation and postestimation," Stata Journal, StataCorp LP, vol. 23(1), pages 53-85, March.
    6. Apostolos Davillas & Victor Hugo Oliveira & Andrew M. Jones, 2024. "A model of errors in BMI based on self-reported and measured anthropometrics with evidence from Brazilian data," Empirical Economics, Springer, vol. 67(5), pages 2371-2410, November.
    7. Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023. "Accuracy of self‐reported private health insurance coverage," Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.
    8. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    9. Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2023. "Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(4), pages 1033-1059, December.
    10. Maddalena Cavicchioli & Michele Lalla, 2022. "Evidences from survey data and fiscal data: nonresponse and measurement errors in annual incomes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 587-615, September.
    11. Stella Martin & Kevin Stabenow & Mark Trede, 2024. "Measurement Error in Earnings," CQE Working Papers 10824, Center for Quantitative Economics (CQE), University of Muenster.
    12. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    13. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    14. Jonathan Fisher & Bradley L. Hardy, 2023. "Money matters: consumption variability across the income distribution," Fiscal Studies, John Wiley & Sons, vol. 44(3), pages 275-298, September.
    15. Whitaker, Stephan D., 2018. "Big Data versus a survey," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 285-296.
    16. Colleen Heflin & Michah W. Rothbart & Mattie Mackenzie-Liu, 2022. "Below the Tip of the Iceberg: Examining Early Childhood Participation in SNAP and TANF from Birth to Age Six," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(2), pages 729-755, April.
    17. Lidia Ceriani & Vladimir Hlasny & Paolo Verme, 2021. "Bottom Incomes and the Measurement of Poverty: A Brief Assessment of the Literature," Working Papers 589, ECINEQ, Society for the Study of Economic Inequality.
    18. García-Suaza, A & Lobo, J & Montoya, S & Ordóñez, J & Oviedo, J. D, 2022. "Impact of the collection mode on labor income data. A study in the times of COVID19," Documentos de Trabajo 20396, Universidad del Rosario.
    19. Meyer, Bruce D. & Mittag, Nikolas, 2021. "An empirical total survey error decomposition using data combination," Journal of Econometrics, Elsevier, vol. 224(2), pages 286-305.
    20. Bruce D. Meyer & Nikolas Mittag, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," NBER Working Papers 25738, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ese:iserwp:2022-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jonathan Nears (email available below). General contact details of provider: https://edirc.repec.org/data/rcessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.