IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/113790.html
   My bibliography  Save this paper

Top-income adjustments and official statistics on income distribution: the case of the UK

Author

Listed:
  • Jenkins, Stephen P.

Abstract

UK official statistics on income distribution have incorporated top-income adjustments to household survey data since 1992. This article reviews the work undertaken by the Department for Work and Pensions and the Office for National Statistics, and the academic research that influenced them, and reflects on the lessons to learn from the UK experience.

Suggested Citation

  • Jenkins, Stephen P., 2022. "Top-income adjustments and official statistics on income distribution: the case of the UK," LSE Research Online Documents on Economics 113790, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:113790
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/113790/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dennis Fixler & Marina Gindelsky & David Johnson, 2019. "Improving the Measure of the Distribution of Personal Income," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 302-306, May.
    2. Rafael Carranza & Marc Morgan & Brian Nolan, 2023. "Top Income Adjustments and Inequality: An Investigation of the EU‐SILC," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 725-754, September.
    3. Richard V. Burkhauser & Shuaizhang Feng & Stephen P. Jenkins & Jeff Larrimore, 2009. "Recent trends in top income shares in the USA: Reconciling estimates from March CPS and IRS tax return data," Working Papers 139, ECINEQ, Society for the Study of Economic Inequality.
    4. Anthony B. Atkinson & Thomas Piketty & Emmanuel Saez, 2011. "Top Incomes in the Long Run of History," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 3-71, March.
    5. Stephen P. Jenkins, 2017. "Pareto Models, Top Incomes and Recent Trends in UK Income Inequality," Economica, London School of Economics and Political Science, vol. 84(334), pages 261-289, April.
    6. Rolf Aaberge & François Bourguignon & Andrea Brandolini & Francisco H. G. Ferreira & Janet C. Gornick & John Hills & Markus Jäntti & Stephen P. Jenkins & Eric Marlier & John Micklewright & Brian Nolan, 2017. "Tony Atkinson and his Legacy," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(3), pages 411-444, September.
    7. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    8. Dominic Webber & Richard Tonkin & Martin Shine, 2020. "Using Tax Data to Better Capture Top Incomes in Official UK Income Inequality Statistics," NBER Chapters, in: Measuring Distribution and Mobility of Income and Wealth, pages 679-700, National Bureau of Economic Research, Inc.
    9. Richard V. Burkhauser & Nicolas Hérault & Stephen P. Jenkins & Roger Wilkins, 2018. "Survey Under‐Coverage of Top Incomes and Estimation of Inequality: What is the Role of the UK's SPI Adjustment?," Fiscal Studies, John Wiley & Sons, vol. 39(2), pages 213-240, June.
    10. Thomas Blanchet & Ignacio Flores & Marc Morgan, 2022. "The weight of the rich: improving surveys using tax data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 119-150, March.
    11. Paul Johnson & Steven Webb, 1989. "Counting people with low incomes: the impact of recent changes in official statistics," Fiscal Studies, Institute for Fiscal Studies, vol. 10(4), pages 66-82, November.
    12. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    13. Brian Nolan, 1989. "An evaluation of the new official low income statistics," Fiscal Studies, Institute for Fiscal Studies, vol. 10(4), pages 53-65, November.
    14. Richard V. Burkhauser & Shuaizhang Feng & Stephen P. Jenkins & Jeff Larrimore, 2012. "Recent Trends in Top Income Shares in the United States: Reconciling Estimates from March CPS and IRS Tax Return Data," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 371-388, May.
    15. Richard V Burkhauser & Nicolas Hérault & Stephen P Jenkins & Roger Wilkins, 2018. "Top incomes and inequality in the UK: reconciling estimates from household survey and tax return data," Oxford Economic Papers, Oxford University Press, vol. 70(2), pages 301-326.
    16. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    17. Anton Korinek & Johan Mistiaen & Martin Ravallion, 2006. "Survey nonresponse and the distribution of income," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 4(1), pages 33-55, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiyuan Wan & Yangcheng Yu, 2023. "Correction of China's income inequality for missing top incomes," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1769-1791, August.
    2. Andrew Aitken & Martin Weale, 2022. "Measuring National Income Growth Democratically: Methods and Estimates for the United Kingdom," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-17, Economic Statistics Centre of Excellence (ESCoE).
    3. Jenkins, Stephen P., 2022. "Getting the Measure of Inequality," IZA Discussion Papers 14996, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nora Lustig, 2019. "The “Missing Rich” in Household Surveys: Causes and Correction Approaches," Commitment to Equity (CEQ) Working Paper Series 75, Tulane University, Department of Economics.
    2. Nora Lustig, 2020. "The ``missing rich'' in household surveys: causes and correction approaches," Working Papers 520, ECINEQ, Society for the Study of Economic Inequality.
    3. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    4. Bartels, Charlotte & Waldenström, Daniel, 2021. "Inequality and top incomes," GLO Discussion Paper Series 959, Global Labor Organization (GLO).
    5. Diego Winkelried & Bruno Escobar, 2022. "Declining inequality in Latin America? Robustness checks for Peru," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 223-243, March.
    6. Xavier Jara & Nicolás Oliva, 2018. "Top income adjustments and tax reforms in Ecuador," WIDER Working Paper Series wp-2018-165, World Institute for Development Economic Research (UNU-WIDER).
    7. Brzeziński, Michał & Myck, Michal & Najsztub, Mateusz, 2019. "Reevaluating Distributional Consequences of the Transition to Market Economy in Poland: New Results from Combined Household Survey and Tax Return Data," IZA Discussion Papers 12734, Institute of Labor Economics (IZA).
    8. Martin Ravallion, 2022. "Missing Top Income Recipients," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 205-222, March.
    9. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    10. Nora Lustig, 2018. "Measuring the Distribution of Household Income, Consumption and Wealth: State of Play and Measurement Challenges," Working Papers 1801, Tulane University, Department of Economics.
    11. H. Xavier Jara & Nicolás Oliva, 2018. "Top income adjustments and tax reforms in Ecuador," WIDER Working Paper Series 165, World Institute for Development Economic Research (UNU-WIDER).
    12. Rafael Carranza & Marc Morgan & Brian Nolan, 2023. "Top Income Adjustments and Inequality: An Investigation of the EU‐SILC," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 725-754, September.
    13. Li, Chengyou & Yu, Yangcheng & Li, Qinghai, 2021. "Top-income data and income inequality correction in China," Economic Modelling, Elsevier, vol. 97(C), pages 210-219.
    14. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    15. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.
    16. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    17. Christoph Lakner & Branko Milanovic, 2016. "Global Income Distribution: From the Fall of the Berlin Wall to the Great Recession," The World Bank Economic Review, World Bank, vol. 30(2), pages 203-232.
    18. Burdín, Gabriel & De Rosa, Mauricio & Vigorito, Andrea & Vilá, Joan, 2022. "Falling inequality and the growing capital income share: Reconciling divergent trends in survey and tax data," World Development, Elsevier, vol. 152(C).
    19. Christian Schluter, 2018. "Top Incomes, Heavy Tails, and Rank-Size Regressions," Econometrics, MDPI, vol. 6(1), pages 1-16, March.
    20. Vladimir Hlasny, 2019. "Redistributive Impacts of Fiscal Policies in Mexico: Corrections for Top Income Measurement Problems," LIS Working papers 765, LIS Cross-National Data Center in Luxembourg.

    More about this item

    Keywords

    inequality; income inequality; top incomes; tax return data; survey data; data combination; SPI adjustment;
    All these keywords.

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:113790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.