Privacy Protection and Accuracy: What Do We Know? Do We Know Things?? Let's Find Out!
Author
Abstract
Suggested Citation
Note: LS TWP
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Evan S. Totty & Thor Watson, 2024. "Privacy Protection and Accuracy: What Do We Know? Do We Know Things?? Let's Find Out!," NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences, National Bureau of Economic Research, Inc.
References listed on IDEAS
- Celhay, Pablo & Meyer, Bruce D. & Mittag, Nikolas, 2024. "What leads to measurement errors? Evidence from reports of program participation in three surveys," Journal of Econometrics, Elsevier, vol. 238(2).
- Paul Bingley & Alessandro Martinello, 2017. "Measurement Error in Income and Schooling and the Bias of Linear Estimators," Journal of Labor Economics, University of Chicago Press, vol. 35(4), pages 1117-1148.
- Charles F. Manski, 2015. "Communicating Uncertainty in Official Economic Statistics: An Appraisal Fifty Years after Morgenstern," Journal of Economic Literature, American Economic Association, vol. 53(3), pages 631-653, September.
- Tommasi, Denni & Zhang, Lina, 2024.
"Bounding program benefits when participation is misreported,"
Journal of Econometrics, Elsevier, vol. 238(1).
- Tommasi, Denni & Zhang, Lina, 2020. "Bounding Program Benefits When Participation Is Misreported," IZA Discussion Papers 13430, Institute of Labor Economics (IZA).
- Denni Tommasi & Lina Zhang, 2020. "Bounding Program Benefits When Participation is Misreported," Monash Econometrics and Business Statistics Working Papers 24/20, Monash University, Department of Econometrics and Business Statistics.
- Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
- John M. Abowd & Ian M. Schmutte, 2019.
"An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices,"
American Economic Review, American Economic Association, vol. 109(1), pages 171-202, January.
- John M. Abowd & Ian M. Schmutte, 2018. "An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices," Working Papers 18-35, Center for Economic Studies, U.S. Census Bureau.
- Ron S. Jarmin, 2019. "Evolving Measurement for an Evolving Economy: Thoughts on 21st Century US Economic Statistics," Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 165-184, Winter.
- Ori Heffetz & Katrina Ligett, 2014.
"Privacy and Data-Based Research,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 75-98, Spring.
- Ori Heffetz & Katrina Ligett, 2013. "Privacy and Data-Based Research," NBER Working Papers 19433, National Bureau of Economic Research, Inc.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021.
"Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data,"
IZA Discussion Papers
14405, Institute of Labor Economics (IZA).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2023. "Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data," LSE Research Online Documents on Economics 117213, London School of Economics and Political Science, LSE Library.
- Susanne M. Schennach, 2016. "Recent Advances in the Measurement Error Literature," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 341-377, October.
- Steven Ruggles & Catherine Fitch & Diana Magnuson & Jonathan Schroeder, 2019. "Differential Privacy and Census Data: Implications for Social and Economic Research," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 403-408, May.
- Meyer, Bruce D. & Mittag, Nikolas, 2021. "An empirical total survey error decomposition using data combination," Journal of Econometrics, Elsevier, vol. 224(2), pages 286-305.
- Crossley, Thomas F. & Fisher, Paul & Hussein, Omar, 2023. "Assessing data from summary questions about earnings and income," Labour Economics, Elsevier, vol. 81(C).
- Bruce D. Meyer & Nikolas Mittag & Robert M. Goerge, 2022. "Errors in Survey Reporting and Imputation and Their Effects on Estimates of Food Stamp Program Participation," Journal of Human Resources, University of Wisconsin Press, vol. 57(5), pages 1605-1644.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353, arXiv.org.
- Binswanger, Johannes & Oechslin, Manuel, 2020. "Better statistics, better economic policies?," European Economic Review, Elsevier, vol. 130(C).
- Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023.
"Accuracy of self‐reported private health insurance coverage,"
Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.
- Nguyen, Ha Trong & Le, Huong Thu & Connelly, Luke & Mitrou, Francis, 2022. "Accuracy of self-reported private health insurance coverage," GLO Discussion Paper Series 1215, Global Labor Organization (GLO).
- Nguyen, Ha Trong & Le, Huong Thu & Connelly, Luke B. & Mitrou, Francis, 2022. "Accuracy of self-reported private health insurance coverage," MPRA Paper 115727, University Library of Munich, Germany.
- De Neve, Jan-Walter & Fink, Günther, 2018. "Children’s education and parental old age survival – Quasi-experimental evidence on the intergenerational effects of human capital investment," Journal of Health Economics, Elsevier, vol. 58(C), pages 76-89.
- Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.
- Peter A.G. van Bergeijk, 2017. "Making Data Measurement Errors Transparent: The Case of the IMF," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 18(3), pages 133-154, July.
- Inbal Dekel & Rachel Cummings & Ori Heffetz & Katrina Ligett, 2024.
"Privacy Elasticity: A (Hopefully) Useful New Concept,"
NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences,
National Bureau of Economic Research, Inc.
- Inbal Dekel & Rachel Cummings & Ori Heffetz & Katrina Ligett, 2024. "Privacy Elasticity: A (Hopefully) Useful New Concept," NBER Working Papers 32903, National Bureau of Economic Research, Inc.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021.
"Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data,"
IZA Discussion Papers
14405, Institute of Labor Economics (IZA).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2023. "Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data," LSE Research Online Documents on Economics 117213, London School of Economics and Political Science, LSE Library.
- Michler, Jeffrey D. & Josephson, Anna & Kilic, Talip & Murray, Siobhan, 2022.
"Privacy protection, measurement error, and the integration of remote sensing and socioeconomic survey data,"
Journal of Development Economics, Elsevier, vol. 158(C).
- Jeffrey D. Michler & Anna Josephson & Talip Kilic & Siobhan Murray, 2022. "Privacy Protection, Measurement Error, and the Integration of Remote Sensing and Socioeconomic Survey Data," Papers 2202.05220, arXiv.org.
- Yosuke Uno & Akira Sonoda & Masaki Bessho, 2021. "The Economics of Privacy: A Primer Especially for Policymakers," Bank of Japan Working Paper Series 21-E-11, Bank of Japan.
- Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
- Paul Fisher & Omar Hussein, 2023. "Understanding Society: the income data," Fiscal Studies, John Wiley & Sons, vol. 44(4), pages 377-397, December.
- J. Tom Mueller & Alexis R. Santos-Lozada, 2022. "The 2020 US Census Differential Privacy Method Introduces Disproportionate Discrepancies for Rural and Non-White Populations," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(4), pages 1417-1430, August.
- Adam Bee & Irena Dushi & Joshua Mitchell & Brad Trenkamp, 2024. "Measuring Income of the Aged in Household Surveys: Evidence from Linked Administrative Records," Working Papers 24-32, Center for Economic Studies, U.S. Census Bureau.
- Celhay, Pablo & Meyer, Bruce D. & Mittag, Nikolas, 2024. "What leads to measurement errors? Evidence from reports of program participation in three surveys," Journal of Econometrics, Elsevier, vol. 238(2).
- Katharine G. Abraham & Ron S. Jarmin & Brian C. Moyer & Matthew D. Shapiro, 2020. "Introduction: Big Data for Twenty-First-Century Economic Statistics: The Future Is Now," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 1-22, National Bureau of Economic Research, Inc.
- Battistin, Erich & De Nadai, Michele & Krishnan, Nandini, 2023. "The insights and illusions of consumption measurements," Journal of Development Economics, Elsevier, vol. 161(C).
- Santiago Acerenza & Kyunghoon Ban & D'esir'e K'edagni, 2021. "Local Average and Marginal Treatment Effects with a Misclassified Treatment," Papers 2105.00358, arXiv.org, revised Sep 2024.
- Dionissi Aliprantis & Hal Martin & Kristen Tauber, 2020.
"What Determines the Success of Housing Mobility Programs?,"
Working Papers
20-36R, Federal Reserve Bank of Cleveland, revised 19 Oct 2022.
- Dionissi Aliprantis & Kristen Tauber & Hal Martin, 2022. "What Determines the Success of Housing Mobility Programs?," Working Papers 2022-043, Human Capital and Economic Opportunity Working Group.
- Hu, Yingyao, 2021. "Identification of Causal Models with Unobservables: A Self-Report Approach," Economics Working Paper Archive 64330, The Johns Hopkins University,Department of Economics.
More about this item
JEL classification:
- C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
- C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
- C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
- J10 - Labor and Demographic Economics - - Demographic Economics - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:32989. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.