IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/7192.html
   My bibliography  Save this book chapter

A Nine-Variable Probabilistic Macroeconomic Forecasting Model

In: Business Cycles, Indicators, and Forecasting

Author

Listed:
  • Christopher A. Sims

Abstract

This model extends one originally constructed by Robert Litterman in 1980 and used continuously since then to prepare quarterly forecasts. The current version is 3 variables larger than Littermans original model, and it now allows time variation in coefficients, predictable time variation in forecast error variance, and non-normality in disturbances. Despite this elaboration the model in a sense has just 12 parameters free to fit the behavior of 9 variables in 9 equations. The paper reports the model structure and summarizes some aspects of its recent forecasting performance.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:7192
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c7192.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    2. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    3. Litterman, Robert B, 1986. "Forecasting Accuracy of Alternative Techniques: A Comparison of U.S. Macroeconomic Forecasts: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 17-19, January.
    4. McNees, Stephen K, 1986. "Forecasting Accuracy of Alternative Techniques: A Comparison of U.S. Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 5-15, January.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    7. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    8. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    9. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    10. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    11. Olivier J. Blanchard & Mark W. Watson, 1986. "Are Business Cycles All Alike?," NBER Chapters, in: The American Business Cycle: Continuity and Change, pages 123-180, National Bureau of Economic Research, Inc.
    12. Donald W.K. Andrews, 1991. "Exactly Unbiased Estimation of First Order Autoregressive-Unit Root Models," Cowles Foundation Discussion Papers 975, Cowles Foundation for Research in Economics, Yale University.
    13. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    14. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    15. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garratt, Anthony & Lee, Kevin C & Pesaran, M. Hashem & Shin, Yongcheol, 1998. "A Structural Cointegrating VAR Approach to Macroeconometric Modelling," Cambridge Working Papers in Economics 9823, Faculty of Economics, University of Cambridge.
    2. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    3. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    4. Par Osterholm, 2008. "A structural Bayesian VAR for model-based fan charts," Applied Economics, Taylor & Francis Journals, vol. 40(12), pages 1557-1569.
    5. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    6. Committee, Nobel Prize, 2011. "Thomas J. Sargent and Christopher A. Sims: Empirical Macroeconomics," Nobel Prize in Economics documents 2011-2, Nobel Prize Committee.
    7. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    8. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    9. Catherine Bruneau & Olivier De Bandt, 1999. "La modélisation Var "structurel" : application à la politique monétaire en France," Économie et Prévision, Programme National Persée, vol. 137(1), pages 67-94.
    10. Mr. Matteo Ciccarelli & Mr. Alessandro Rebucci, 2003. "Bayesian Vars: A Survey of the Recent Literature with An Application to the European Monetary System," IMF Working Papers 2003/102, International Monetary Fund.
    11. Cerqueira, Vinícius Dos Santos & Ribeiro, Márcio Bruno & Martinez, Thiago Sevilhano, 2014. "Propagação Assimétrica de Choques Monetários na Economia Brasileira: Evidências com base em um modelo vetorial não-linear de transição suave," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(1), April.
    12. Francis Neville & Owyang Michael T. & Sekhposyan Tatevik, 2012. "The Local Effects of Monetary Policy," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(2), pages 1-38, March.
    13. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    14. Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working Papers 200913, University of Pretoria, Department of Economics.
    15. Heather M Anderson & Farshid Vahid, 2010. "VARs, Cointegration and Common Cycle Restrictions," Monash Econometrics and Business Statistics Working Papers 14/10, Monash University, Department of Econometrics and Business Statistics.
    16. Luigi Paciello, 2011. "Does Inflation Adjust Faster to Aggregate Technology Shocks than to Monetary Policy Shocks?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(8), pages 1663-1684, December.
    17. Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
    18. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    19. Neely, Christopher J., 2022. "How persistent are unconventional monetary policy effects?," Journal of International Money and Finance, Elsevier, vol. 126(C).
    20. Rangan Gupta & Stephen M. Miller & Dylan van Wyk, 2010. "Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics," Working papers 2010-06, University of Connecticut, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:7192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.