IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v45y2013i23p3340-3346.html
   My bibliography  Save this article

Why is it so difficult to outperform the random walk in exchange rate forecasting?

Author

Listed:
  • Imad Moosa

Abstract

A simulation exercise is used to demonstrate the difficulty to outperform the random walk in exchange rate forecasting if forecasting accuracy is judged by the Root Mean Square Error (RMSE) or similar criteria that depend on the magnitude of the forecasting error. It is shown that, as the exchange rate volatility rises, the RMSE of the model rises faster than that of the random walk. While the literature considers this finding to be a puzzle that casts a big shadow of doubt on the soundness of international monetary economics, the results show that failure to outperform the random walk, in both in-sample and out-of-sample forecasting, should be the rule rather than the exception. However, the results do not imply that the random walk is unbeatable, because it can be easily outperformed if forecasting accuracy is judged according to criteria such as direction accuracy and profitability.

Suggested Citation

  • Imad Moosa, 2013. "Why is it so difficult to outperform the random walk in exchange rate forecasting?," Applied Economics, Taylor & Francis Journals, vol. 45(23), pages 3340-3346, August.
  • Handle: RePEc:taf:applec:v:45:y:2013:i:23:p:3340-3346
    DOI: 10.1080/00036846.2012.709605
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2012.709605
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2012.709605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    2. Salisu, Afees A. & Ndako, Umar B., 2018. "Modelling stock price–exchange rate nexus in OECD countries: A new perspective," Economic Modelling, Elsevier, vol. 74(C), pages 105-123.
    3. Imad Moosa & Kelly Burns, 2013. "The monetary model of exchange rates is better than the random walk in out-of-sample forecasting," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1293-1297, September.
    4. Afees A. Salisu & Juncal Cuñado & Kazeem Isah & Rangan Gupta, 2021. "Stock markets and exchange rate behavior of the BRICS," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1581-1595, December.
    5. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019. "Another look at the energy-growth nexus: New insights from MIDAS regressions," Energy, Elsevier, vol. 174(C), pages 69-84.
    6. Imad A. Moosa, 2015. "The random walk versus unbiased efficiency: can we separate the wheat from the chaff?," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 38(2), pages 251-279, October.
    7. Kelly Burns, 2016. "A Reconsideration of the Meese-Rogoff Puzzle: An Alternative Approach to Model Estimation and Forecast Evaluation," Multinational Finance Journal, Multinational Finance Journal, vol. 20(1), pages 41-83, March.
    8. Salisu, Afees A. & Olaniran, Abeeb & Tchankam, Jean Paul, 2022. "Oil tail risk and the tail risk of the US Dollar exchange rates," Energy Economics, Elsevier, vol. 109(C).
    9. Peter Golit & Afees Salisu & Akinwunmi Akintola & Faustina Nsonwu & Itoro Umoren, 2019. "Exchange Rate And Interest Rate Differential In G7 Economies," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(3), pages 263-286, October.
    10. Afees A. Salisu & Juncal Cunado & Kazeem Isah & Rangan Gupta, 2020. "Oil Price and Exchange Rate Behaviour of the BRICS for Over a Century," Working Papers 202064, University of Pretoria, Department of Economics.
    11. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    12. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    13. Burns, Kelly & Moosa, Imad A., 2015. "Enhancing the forecasting power of exchange rate models by introducing nonlinearity: Does it work?," Economic Modelling, Elsevier, vol. 50(C), pages 27-39.
    14. Afees A. Salisu & Abdulsalam Abidemi Sikiru, 2021. "Palm Oil Price–Exchange Rate Nexus In Indonesia And Malaysia," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 24(2), pages 169-180, June.
    15. Moosa, Imad A. & Vaz, John, 2018. "Direct and Indirect Forecasting of Cross Exchange Rates," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 71(2), pages 173-190.
    16. Enzo Cassino & David Oxley, 2013. "How Does the Exchange Rate Affect the Real Economy? A Literature Survey," Treasury Working Paper Series 13/26, New Zealand Treasury.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Haab & Dr. Thomas Nitschka, 2017. "Predicting returns on asset markets of a small, open economy and the influence of global risks," Working Papers 2017-14, Swiss National Bank.
    2. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    3. Fullerton, Thomas M. & Kelley, Brian W., 2008. "El Paso Housing Sector Econometric Forecast Accuracy," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 385-402, April.
    4. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    5. Dladla, Pholile & Malikane, Christopher, 2019. "Stock return predictability: Evidence from a structural model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 412-424.
    6. Thomas Mayer, 2006. "The Empirical Significance of Econometric Models," Working Papers 620, University of California, Davis, Department of Economics.
    7. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2018. "An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?," Discussion Papers 48/2018, Deutsche Bundesbank.
    8. Gelper, Sarah & Croux, Christophe, 2007. "Multivariate out-of-sample tests for Granger causality," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3319-3329, April.
    9. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    10. repec:lan:wpaper:2592 is not listed on IDEAS
    11. Jaime Casassus & Freddy Higuera, 2011. "Stock Return Predictability and Oil Prices," Documentos de Trabajo 406, Instituto de Economia. Pontificia Universidad Católica de Chile..
    12. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    13. Yang Bai, 2022. "150 Years of Return Predictability Around the World: A Holistic View," Papers 2209.00121, arXiv.org.
    14. Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    15. Inna S. Lola & Anton Manukov, 2020. "Forecasting Employment In Small Businesses In Russia: The Relevance Of Business Tendency Surveys," HSE Working papers WP BRP 113/STI/2020, National Research University Higher School of Economics.
    16. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    17. Rómulo Chumacero E., 2004. "Forecasting Chilean Industrial Production and Sales With Automated Procedures," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 7(3), pages 47-56, December.
    18. Ron Alquist & Gregory Bauer & Antonio Diez de los Rios, 2014. "What Does the Convenience Yield Curve Tell Us about the Crude Oil Market?," Staff Working Papers 14-42, Bank of Canada.
    19. Pablo Pincheira & Jorge Selaive, 2011. "External imbalance, valuation adjustments and real Exchange rate: evidence of predictability in an emerging economy," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 26(1), pages 107-125, Junio.
    20. Thomas Fullerton & Roberto Tinajero & Martha Barraza de Anda, 2006. "Short-Term Water Consumption Patterns in Ciudad Juárez, Mexico," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 34(4), pages 467-479, December.
    21. Clancy, Daragh & Gabriele, Carmine & Žigraiová, Diana, 2022. "Sovereign bond market spillovers from crisis-time developments in Greece," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:45:y:2013:i:23:p:3340-3346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.