IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i5p2686-2699.html
   My bibliography  Save this article

Solving Natural Conic Formulations with Hypatia.jl

Author

Listed:
  • Chris Coey

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Lea Kapelevich

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Juan Pablo Vielma

    (Google Research and MIT Sloan School of Management, Cambridge, Massachusetts 02142)

Abstract

Many convex optimization problems can be represented through conic extended formulations (EFs) using only the small number of standard cones recognized by advanced conic solvers such as MOSEK 9. However, EFs are often significantly larger and more complex than equivalent conic natural formulations (NFs) represented using the much broader class of exotic cones . We define an exotic cone as a proper cone for which we can implement easily computable logarithmically homogeneous self-concordant barrier oracles for either the cone or its dual cone. Our goal is to establish whether a generic conic interior point solver supporting NFs can outperform an advanced conic solver specialized for EFs across a variety of applied problems. We introduce Hypatia, a highly configurable open-source conic primal-dual interior point solver written in Julia and accessible through JuMP. Hypatia has a generic interface for exotic cones, some of which we define here. For seven applied problems, we introduce NFs using these cones and construct EFs that are necessarily larger and more complex. Our computational experiments demonstrate the advantages, especially in terms of solve time and memory usage, of solving the NFs with Hypatia compared with solving the EFs with either Hypatia or MOSEK 9.

Suggested Citation

  • Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:5:p:2686-2699
    DOI: 10.1287/ijoc.2022.1202
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1202
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    2. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    3. Benoît Legat & Oscar Dowson & Joaquim Dias Garcia & Miles Lubin, 2022. "MathOptInterface: A Data Structure for Mathematical Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 672-689, March.
    4. NESTEROV, Yurii & TODD, Michael & YE, Yinyu, 1996. "Primal-Dual Methods and Infeasibility Detectors for Nonlinear Programming Problems," LIDAM Discussion Papers CORE 1996037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Dávid Papp & Sercan Yıldız, 2022. "Alfonso: Matlab Package for Nonsymmetric Conic Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 11-19, January.
    6. NESTEROV, Yu., 2006. "Constructing self-concordant barriers for convex cones," LIDAM Discussion Papers CORE 2006030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathieu Besançon & Joaquim Dias Garcia & Benoît Legat & Akshay Sharma, 2024. "Flexible Differentiable Optimization via Model Transformations," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 456-478, March.
    2. Lea Kapelevich & Erling D. Andersen & Juan Pablo Vielma, 2024. "Computing Conjugate Barrier Information for Nonsymmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 271-295, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    2. Quoc Tran-Dinh & Anastasios Kyrillidis & Volkan Cevher, 2018. "A Single-Phase, Proximal Path-Following Framework," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1326-1347, November.
    3. Mathieu Besançon & Joaquim Dias Garcia & Benoît Legat & Akshay Sharma, 2024. "Flexible Differentiable Optimization via Model Transformations," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 456-478, March.
    4. Zohrizadeh, Fariba & Josz, Cedric & Jin, Ming & Madani, Ramtin & Lavaei, Javad & Sojoudi, Somayeh, 2020. "A survey on conic relaxations of optimal power flow problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 391-409.
    5. Lea Kapelevich & Erling D. Andersen & Juan Pablo Vielma, 2024. "Computing Conjugate Barrier Information for Nonsymmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 271-295, July.
    6. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    7. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    8. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    9. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    10. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    11. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    13. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    14. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    15. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    16. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    17. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    18. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    19. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    20. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:5:p:2686-2699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.